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The following generalized differential equation is considered:

2 DF, 1) (0.1)

This equation can be reduced to the ordinary equation dz/dt=f(x,t),
if the partial derivative dF / dt = f(x,t) is continuous. The
existence of a solution of the equation (0.1) will be established and
it will be shown that the solution is a continuous function of the
parameter if the function F(z,t) is continuous in x and of bounded
variation in t when x is fixed.

In particular, it is found that the solution of the equation
dx/dt = f(x,t) + d(t) is near to some (completely determined) dis-
continuous function, if f(x,t) is continuous, and the function d(t)
is near the Dirac function, i.e.

L -]
d(t)=0, d(t)=0 for |t|=8>0, Sdmm=1

We recall certain definitions and results given in an earlier
paper [1 ] which will be used in the sequel

Let 8(r) be a positive function defined for 7, r < r*. Let the
real-valued function U (r,t) be defined forr,.{ r Lr*, 17 — &(r)
£ t£ 7 +8@). The real function ¥ (r), r«r < 7* is called an
upper function for the function U if there exists a positive function
8ty B8(r), a7 < 7* such that

(T — To) (M (7) — M (74)) = (T — To) (U (%o, T)— U (7o, To))
for 0.2)
To— 8 (To) T << To+ 8 (T0)
A function x(r) will be called a lower function for U if the
function -m(r) is an upper function for the function -U. For an
Reprint Order No. PMM 3.
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arbitrary upper function M(r) for U, and for an arbitrary lower
function m(r) for U it is always true that

M) —M (%) Zm (") —m(T,) (0.3)

This inequality justifies the following definitions,

If U(r,t) is such that there exists for it an upper function M(r)
and a lower function m(r), and if

infy (M (7°) — M (x,)) = sup,, (m (2%) —m (<,)) (0.4)

where M(r) is the set of all upper, and a(r) the set of all lower
functions for U, then U is said to be integrable (according to
Perrone in the generalized sense), and the number I = 1nf#2ﬂ(r’) -
Mr )] is called the generalized integral (according to Perrone) of
DU with the limits of integration fromr, tor*:

[ = S DU (z, 1) (0.5)
For the P~integral thus defined, certain basic theorems can be
proved, for example,

E.DU (z, 1) =§ DU (z, t)+§.BU (z, ) (0.6)

Ta * o

ifrag o r* and if the integrals appearing on the right-hand side
or the integral on the left-hand side of the equation are defined.

If U(r,t) = f(r)t, then the integral (0,5) exists only when
o
S f(r)dr
Te
exists in the sense of Perrone, and in this case the two integrals
are equal.

If the function U(r,¢t) = {Ui(r,t), sess Up(r,t)) takes on values
in a Euclidean space En, then U{r,t) is said to be integrable if each
of the functions Ul(r,t), e Un(r,t) is integrable., In this case

T E1 o

SDU (1, 1) = (S DU (x, 1), ..., SDUﬂ(T, z))

Te Te Te

We next give the definition of the generalized difrerential equa~

tion (0.1)., Let G be an open subset of the Euclidean space E"+l’ and
let the function F(x,t) be defined for (x,t) ¢ G, x= (xl. ey ’n>'
and take on values in the Euclidean space En. Let the function x(r)
be defined inr, <r < r,, take on values in E,, and let (x(r),r)e G
forr, 7 < 7,.
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The function x(r) is said to be a solution of the generalized
differential equation (0.1) if
Ty
z(r) ==(ts)+ | DF (2 (%), ) for T m€(m, ©.7)
T
Remark 0.1, The given definition of a generalized differential
equation is a particular case of the definition introduced in an
earlier article [ 11, where it was assumed that the function F was
defined on some subset of the space En+z and depended on the vari-
ables x, r, t.

It is proved that all solutions of the generalized eguation (0.1)
are also solutions of the classical equation

dx/dt = f(x, 1) (0.8)

if the derivative JdF(x,t)/dt = f(x,t) is continuous; and, conversely,
every solution of (0.8) is also a solution of (0.1).

The existence of the integral (0.5) is proved below; the existence
theorem of a solution for equation (0.1) is proved in Section 2. The
proof is similar to the proof of the corresponding theorem under
Carathéodory’s conditions,

The continous dependence of the solution on the parameter is con-~
sidered in Section 3. In Section 4, the uniqueness theorem is proved
under the assumption that w(®@) =c¢ 7 (c > 0).

1. Existence of the integral (0.5)

We introduce the following notation:
h, (¢), h, (t) are functions, defined for t e<T,, T,>, non-decreasing
and contlnuous from the left.

olp) is a function defined for 0< 7 <9y, 7y >0, continuous, increasing,
&Kn) 2ep (>0), 0 (0) =

G is an open subset of the n-d1men51onal Euclidean space E, (T, T, ),
(T% > T}) F=FG, o h, )} is the class of functions F(x,t) satlsfyxng

the following condxtlons the function F(x,t) is defined for {(x,t) ¢ G
and takes on values in E:

VF (2, t) = F (@ ) | <Th (t) — (1) |, 1 (2, 1), (2, 1) €G

| F (25, t2) — F (xg,,t:) — F (21, L) + F (21, 1)<
K0 (|23 — 2y |) | Ay (22) — By (81) ]
1f (21, ), (T L), (Tata) (Za) 1) €G, @ — 2| << e
ulr} is a function defined forr ¢fo,, 0,), (0, > 0,), u(r) e E .
(ulr)yr) e G, Jlulr,) — ulr )|} < {h,tr,) = h(r ), for r

o c?orl, 02)
N(p) is the set of all points t ¢ (T,,T,), for which
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either o (h,(t+) — h,(¢)) » 7,
or hz(t+)—~h2(t)>r]0,
where 7 1s an arbitrary positive number and
hz(t+) = lim hz(r) as 7 —>»t, r > t.
(The cardinal number of the set N(y) is obviously finite).

Ay, T Ty hz) 1s the set whose elements are finite sequences of
numbers

{aOy T1y @1y Ty - o e Tgy Kgf =A

if the following conditions are fulfilled:
(1) o,
(2) d,o <r

= <A < <=0,

1§-a1 S7'25»"'\<rs<ocs;

(3) if te N@p) N < o4, 0, >, then there exists an index j such
that t = 7. and 7 < 0:; in the case that t = aZeN(n), it is only
required t'lnat t = 7§ fl)r the appropriate j;

(4) if ry € N(p), then
hz(aj) - hz(“j—1) <7y, @ (hz(aj) - hz'(otj_l)) <y,
if rj€ N (), then
h (5) — hy (vj +) < Mo @ (B2 (@) — b2 (v5 +)) <[ (for ;<o)
Ry (15) — by (#5—1) <o, 0 (ha (3j) — A (2j—1)) <17

The sequence A will be called a subdivision of the interval <o, ,0,>.

2
For the formulation of the theorem on the existence of the integral
we need the following lemma.

Lemma 1.1. The set Aly, 0., 0,, h)) is non-empty.
For the proof of this lemma we select for everyre <o,, 0,, > a

positive number 8(r ) satisfying the following conditions:
if r&éN{n), then

) <mo  o(h Q) —hy ()<, o (ha(t) — ke (U) <)

T €N (1),
if reN(p), then
8 (r) <o, o (ke (V) — e (v +)) <, o (e (7) — he () <
where 7 = {((x) =min(s,, T+ &(z)), % =0 (x) = max (o5, = — (7))

Obviously, the interval ((’,{) does not contain a point of N(y) if
r&N(7), and the intersection of the interval ({',g) with the set N(p)
contains only the point 7 if 7eN(p).

By decreasing 8(r ), one can establish that the above assertion is
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true also for the closed interval < £ (), {(r) >.

Let the intervals < C'(Tl). C(ri) >, ees <L), Lr) > cover the
interval < 0y, 0,y >, 1y <7, <l <1y, and suppose that the interval
<o,, 0, > is no longer covered if one of the intervals < {7 (r ~).C(TJ~) >
is omitted. This pro;’)erty implies that g”(rj) < C'(er_). C(rj'g <
g(er), {(rj_i) <L )

From these inequalities it follows that there exist numbers a_,,..,Q
such that the subdivision { Aoy Tyy sees T, as} satisfies all of our
requirements. In particular, 1f te€ <oy, o, > N(@), then there
exists an index j such that t =r ., for t e < ("), {(r) > only if

t = 7. Greater details of these considerations are given in reference
[11,81, in the proof of Lemma 1.1.

Theorem 1.1. The integral

Oz

SDF (u(z), t) (1.1)

Gy

axists if

|

where Rj=F(u(v), &) —F ((x), 4-1), i GEN() or 5 =3,
Rj = F(u (v +) a:i) —Fu®;+), vy +) + F (u(z;), T +)—
—F(u(y), aj—), if HEN(n), <o

{og, Ty, %3y ..., Ty %} €A(7M, o1, 05 hy), then

[DF @), 6) — B B <n Vit (00) + b (02) — by () — i ()
Ch j=1

Corol larycl 1.
[§DF (@ (@), )] < [ha(5) = ha(3g) | for o5, 54 € 31, 03)

Proof: Let Ulr ,t) be an arbitrary component of the vector function
Fu(r),t), and let 7 > 0. Ifr ¢ < 0., 0, >7,EN@p) let us set
M (%, =) = U (%, ) + 0 (ks (v) + ks (7))
m (To’ 7)) = U (%os T) — N (hy (v) + Ay (T))

If T,€ <04, 0, >N Np), let

T€{ry, Ty

M (v, ©) =U (0, ) 4 (ke (7) + Ay (7)) for o <t K7
M, )y =U(to, o +)+U(w+, ©)—U (4, w+)+nkE + k(1)
for T <t
m (g, ) =U (1, ©) — (A1 (v) + k2 (7)) for 51 < T <7
mit, ) =U(tg, t-+)+U(p+, ) —U(m+, % +) =k (3) + Ay (1))
tor T < T %
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We define the function M(r), for r ¢ <o, 0,>, the following way:

1 M (o)) =0
M (z) = DM (v, o) — M (vj, «-)] + M (v, ©) — M (ni, %iy)
i=1

oo <t
We prove that M(r) is an upper function for U(r,t). The inequality
(v — 1) [M (x) — M (10)] > (v —76) [U (%, ) — U (%0, 7o)l
is obviously satisfied if r ¢ <o, o, >MING), 7,<7< o0, and
if r is near enough tor .
Let r, 1 €<y g, B> ifr;éNG). If Tif N(@), letr, 7 e <,
7, >. We obtain
(v — %) (U (10, ©) — U (1, )] < (x— ) [U (%1, 7) — U (%, 10)] +
T — | |U (=g, ©) — U (%o, %) — U (xi, ©) + U (%, ) | <
S (=) (U (v, ) = U (zi, )l + v =70 |0 (| (w) —u (5]} | Ay (7)—hy(z)] <<
K= [U (v, ©) — U (%1, ) + 7 (hy (%) = Ry (%))] = (v — 7o) (M(x) — M ()

Here we have used the following inequalities

() —u (o) | < hg (o) — Ay (i) Ko
o(lu () —u () <olhy (@) — by (2-1)) <7
(U (1, ©) — U (79, %) — U (71, 1) + U (71, 1) | <
< F (u(ro), 7y — F (u (o), 7o) — F (u (%), ©) + F(u(r:), 7)<
< o(|u(t) —u(w) “) | Ay (1) — Ay (7o) |

The case that remains to be considered is when r eN(p), r , re <
i» @;2>. In this case we obtain in a manner analogous to the one used

above

(x — %) [U (ro, ©) — U (g, )] <(t—) U (% +, ©) — U (v +, )] +
F = |U (Tt ) — U (79, %) = U (1 4, ) + U (7 +, %) | <
{(‘c-—-—':o){(f(':i—{—, ) —U (mi 4+, "o)}'f‘l’f‘—%f'ﬂhl(‘f)‘— hy () | =
= (1) [U(xi +, D) —U(ni+, %) + 17 (v) — hy (7)) =
= (1 — 1) [M (z) — M (z,)]

Here we have used the inequalities

|U (34, 7) — U (%9, o) — U (i 4, 1) -+ U (31 -+, <o) P <<

| F (8 (z0), ©) — F (u (%), %) — F (u(ti +), %) -+ F(u(zi+), %)) I

Lo (u () —u(m +) ) | A (x) — ks (z0) | K (Ro(e)—hs (51 +)) | Fun(x) —hy(%0) | <
N | Ry (1) — Ry (7o) ]

Thus we have proved that for everyr ¢ < o,, 0, > there is satisfied
the inequality (0.2) if onlyr € < 0., 0, > is sufficiently near tor .
This means that M(r) is an upper function for Ulr,t). In an analogous
manner we can construct a lower function m(t). From the inequality
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M (o5) — M (31) — (m (35) — m (3,)) << 21 (hy (32) + by (02) — hy (01) — ha (34))

it follows that the integral (0.5) exists, for the functions M(r) and
m(r ) can be constructed for an arbitrary positive n (and for the
corresponding subdivision). Hence, the integral (1.1) exists. Further-
more, in consequence of the inequality

O

M (3g) —M (35) > | DU (x, 1) > m(34) — m(33)

Cs

and from the representation of the functions M(r) and m(r) it follows
that

Ty

|§ pU Z Py | < (ha (3,) + B (3) = By (39) — hy (33))

o4

where P. 1s the appropriate component of the vector R This yields the
inequality of Theorem 1.1,

2. Existence theorem for the solution of equation (0.1)

Let F(x,t) be a given function of the class F(G, @,h ). We denote by
the subset of the set G which consists of those po1nts (x,t) for
W 1ch (x + F(x,t +) - F(x,t),t) € G. Obviously, if for a fixed
t, hl(t +) = hl(t) and (z,t) € G, then (x,t) ¢ Gp. It is easily
verified that Gp is an open set.

Theorem 2.1. Let (x vt ) ¢ G and let us select a number & > 0 which
has the following propertles if t, <t + ¢ and || x~ [x, + Flx,, t, +)~
Flxg, e+ ]| < by (2) = b (2+), then (x, £) €G. Under these cond1t1ons
there exists a funct1on x(r) defined for t < 7 < t, + & which is of
bounded variation, is continuous from the left, and satlsfles the
equation

2 = DF(z, 1) (2.1)

with the initial condition z(t ) = x_.

Remark 2.1, In consequence of (1.1) we find that every solution u(r)
of equation (2.1) which is of bounded variation and continuous from the
left satisfies the inequality

[l w (v2) — u (72) | << | ha (72) — ha (71) ] 22

for arbitrary Ty Ty from the interval on which u(r) is defined. In the
article [1 ], Section 1, there is given another equivalent definition

of the integral (0.5) by means of partial sums and a certain limiting
process. From that definition it is easily deduced that the inequality
(2.2) is valid for any function u(r ) which is a solution of equation
(2.1), without the assumption that the function u(r) be of bounded
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variation and continuous from the left. This can be established on the
basis of the fact that an inequality analogous to (2.2) can in this case
be established for any one of the partial sums which enter into the
earlier definition of the integral {0.5).

Remark 2.2, Any solution x(r) which is defined on some interval with
t, as its left endpeint, can be extended for increasing r (just as in
the classical case) as long as the point (x(r),r) lies in the set GF'

But the solutions cannot always be extended for decreasing r. Let us con-
sider the most simple case. Suppose =x ¢ E1 and F(x,t) = z for tg 0;
F(x,t) = 0 for t > 0. In terms of the concepts we have introduced, the
following theorem is true: if 7, g Ty < r*, and the integral (0.5) exists
for the interval < r,, r* >, then the integral (0.5) exists for the

interval < 7., r_ > and if the lim U(ro.t) as t=»7_ + exists, then

o] o]
Ty To
lim S DU (1, z)=g DU (1, )+ lim U (%o, t) — U (%, 7o) (2.2%)
T To -+ 14
Te Ta

(see [ 1), theorems 1.8.3 and 1.3.6). In consequence of this it follows
that lim x(r) = 0 as 7~» 0 +, where x(t) is an arbitrary solution defined
in some neighborhood of the number ¢ = 0, For the given example, the
solution % (r), defined by the equation x (r) =1 forr > 0, cannot be
extended to r £ O.

Proof. We define a sequence of functions x {1 ):

Zi (%) = T for ) —E/i<CTy

Ty

i (%) = Zo + S DF(z(c—§]i), 1) for to<lm ly+t

te

Making use of Theorem 1.1 and Corollary 1.1 one can verify that the
functions x;{(r ) are uniquely defined for t, ~ /i< 7 < t  + £ for all
integers 1 > i, and that

foi (t2) — @i (v) | << Ay (T2} — Ry (70) | for 7y, m €4ty — & /4, 8 4§,
Ti (o +) = &y + F (%o, Lo +) — F (T, 1y) (i == io) (2.3)
In consequence of the inequality (2.3), one can select from the
sequence xi(r) a subsequence which converges uniformly in the interval

< ty, ty+ &>. We, therefore, suppose that x (r ) —>x(r ) uniformly for
Te< ity to+ &>, i—Po.

Obviously, || x,(r,) ~ 2 ) || < |y )) — A G )] and x;(r - &/i) —>
z{r ) (but not uniformly), for the function h,{r) is continuous from the
left.

Let us evaluate the integral (1.1), where t < 0, <0, <ty +7,
Let 7 be any positive number less than 7. let us take a fixed sub-
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division{ao, Tar By ooy T, as} e Alp, 0, 0y, hl)'
By Theorem 1.1, the integral (1.1) differs from the partial sum
D F (z(ry), o) — F(z(3), %5-0)] +
J
T, €N, or [=5
+ D F @ (5 +) ap) —F @z +)m+) + (24
j
T, EN(M), <5
+ F(x(ty), 7 +) — F(2(55), %))
by a term whose norm is not greater than Ky, where K is independent of 7.
let us setr’; ;= T ifr: & N@p), or j = s, "j,i =74+ &/iif
j<sand 7:eNGy), Let' g;(¢)'= A (t ) if t <t t, + f/{, and let
J . 1 Mo o 0
g;(t) = h (t = &/i) for t, + £/i < t, + &.
Thus {a, r’i,i,’ ¢, 7’2 P e r’s,i’ as} € A(qt o Oy, hz) for
sufficiently large i, and, fence by Theorem 1.1, the integral

Gy

\ DF (zi(x—%/0), t)

can be expressed as the partial sum
JUF (@i (55— &/ 1), o5) — F (@i (5 —§/ 1), %)) +
i

Tj €N (71)7 or ]' =5

+ 2 IF (@i (55 4)> ai) — F (@i (55 4), m+) +

TEN (D), [<s
+ F (i (t3), 75 4) — F (2 (t);, 2j-1)]

to within an error whose norm is not greater than Kj, where K 1s
independent of i and  for sufficiently large i. Since z;(r )—>zx(r ),
x.(r — £/i1)—>2(r) and F(x,t) ¢ F, it follows that the sum (2.4) and
(5.5) are arbitrarily close to each other for i sufficiently large.
Therefore,

(2.5)

Sz DF (x; (x — &/ 1), t)—»g' DF (z(x),t) for i— o0

and x(r ) 1s a solution of the equation (2.1). This completes the proof
of the theorem.

3. The continuous dependence of the solution on the para-
meter
(The basic result is Theorem 3.1. The later theorems are obtained as
special cases of it.)
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Let F(x,t) be a function of class F(G, w, h) and Fi(x,t) be a
function of class F(G, o, hy), where k = 3, 4, 5, ..., h(t) and k()
are increasing functions m t £<0 T>, (GC E, <0 'I‘)) Furthermore,
h(t) and h(t) are continuous from the left. Let H be the set of points
of discontinuities of the function h(t), G, be some open subset of G
which contains all points (x,t) ¢ G for which t ¢ H.

We shall say that the sequence Fj{x,t) converges unconditionally to
the function F(x,t)} in G, , and write F(x,t) —> F(x,t), if the following
properties are exhibited

(I) 11m sup (hy (t3) — hy (1)) < h (t;) — h(t;) for &y, t, €H; t,<t,

(11) I’k(a:, )—>F(z,t) for k—>o00 (&, 1)€G,, t€H

(TID) 1f (=, t.) ¢ Gy, t, € H, then for every ¢ > 0 there exist
numbers 5 , 5, having the following properties: for arbitrary numbers
€ H, t -—8< ty <ty <ty <t +81, there exists a K > 0 such
that

(a) if |ly - ]l <8, and k > K then there exists a function x(r ),
defined in t, <7<ty which is a solution of the equation

g;-xr = DFy (2, t), zi () ==y

(b) every function x,(r) satisfying (a), satisfies also the
inequality {xk(tz) -z (t,) = Flx, t +) + Flx,, t,) Il <€, and there
exists a positive number g, 1ndependent of the solutlon z,(r), of the
subscript k, and of the point y, such that the distance of an arbitrary
point (xk(r ),r) (¢, €7 < t,, k> K) from the boundary of the set G,
is greater than p.

Theorem 3.1. let Fp(x,t) =2 F(z,t) in G,, let x(t) a solution of the
equation

4z . DF(, 1) (3.1)

be uniquely defined in the 1nt;erval<al, o, > by its initial condition,
0, 0, ¢ H (xlr)yr) e G forr e <o, 0,> let yp ¢ E, y,—>x(0,).
Then:
(¢) for all large enough k there exists a solution x(r) of the
equation

42 — DFy (2, 1) (3.2)

defined forr ¢ <o, 0, >, % (o, ) = yp, and the distance of an arbitrary
point (x(r),r) from the boundary of the set .G, is greater than some
positive number B

(d) if x,(r) is a sequence of functions satisfying condition (c),
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then
i () —>z(x) for k—oo, t€ oy, a)NH

Remark: We shall say that the solution x(r) is uniquely defined by
its initial condition if each solution u(r) of the equation (3,1)
defined in some interval <o, 02' >C <oy, 0,>, uloy) = x0,),
coincides with z(r) on < o, 02’ >.

First we prove the following lemma.

Lemma 3.1. If the condition (¢) of Theorem 3.1 is satisfied on some
interval<o,, 02'> C <al, az>, 0,” ¢ H, then the condition (d) is also
satisfied on the same interval <01, a,">.

Proof: let the sequence x,(r) satisfy condition {c) of Theorem 3.1
on the interval<o,, 0,”>. Then there exists a subsequence up(r ) which
converges for each r ¢<o,, 02’> M H. (This follows from the fact that
the functions u,(r) satisfy the inequality lap y) = up ) [} < [h ()
- h, A, A, A, <oy, 0, >, in consequence of 2.1). Suppose

u(t) = klim u (%), ©€sy, O NH

Then we have

lu@e) —u Q) [<TAGRD) —h () My A€o, 3D NH (3.3)

Let us extend the definition of the function u{r) in such a manner
that the function u{r) be defined and continuous from the left in the
im:erval(al, 02'>. Then (3.3) will be valid for A, A, e(ai, 0,">.
Let 05 be an arbitrary number in the interval<o,, 0,>, 03 >0, 0 H
Our immediate aim is to prove that

Ty Oy
R DF (uy (=), t)— S DF (u(z), t) for k— o0 (3.4)
Ty oy

Suppose n > 0. Let £, < 7,... <7 _be points of the set<o,, 03>
N(p). In consequence of our hypothesis it follows that (u(r;), 7)) ¢ G;.
For the numbers ¢ = n/i and the points (uf(?;), i ) we select numbers
811- > 0, Szj > 0 such that the condition (IIII), on the unconditional
convergence, be satisfied; let § § be such a positive number that

E)— bR —35) + h (54 8) —h G H)<a/r
5<by  w(h(m)—h(z—3)) <3y

In a manner similar to the one used in Lemma 1.1 we prove that there
exi:.ats.a subdivision‘{ Gos Tys vens T alt e Alpg, o,, o, h) which
satisfies the following conditions:

(e) let Tp < eee <fpr be numbers such that rjs<ai, a, > N@p).

(3.5)
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Then 1'p1 =7, rp2 =7, ey "pp = o and hence

ij - 8] <ap‘j——1 <ij < apj <T}’)] + ?)]

(f) if rjEN(n), then rje€ H;

(g) o€ H, j= 0, 1, ..., s.

(For the construction of the subdivision we start with a system of
intervals J defined in the following way: the interval€¢” (7)., £()Dis
one of the intervals J if r ¢<o,, 02'>nN(n) and hence r = i
e §5.<C7 )< < {(rj) <+ e (h(C('j))-h(r-+ )) <9,

o (hi7.) - R {'(rj )) <np,or1f r eN(p), r e<01, 02’>, and (),
¢’(r) are numbers satisfying the inequalities ¢, < {"(r) <7 < ry g
0,", @ (h( ¢ )= h( )<y, ¢7G)<r, ifo, <1, ¢ (r)> Ty
when (r) < o,”. '

It is easily seen that the intervals of the system J cover the
interval(ol, o, *> and sc on).

Obviously, iapj—l , ij-l + 1, ..., Ocpj - 114
e Aly, (ij_1, apj_l, h), where j = 1, ..., r+ 1, ocpo = 0, OLpr+1 =a,
and from Theorem 2.1 it follows that
*pj—1 Pyt
[} pFw@.n— 2 FaE,w) —Fee), wl]<
i1 rio (3.6)
< 27 [h(2pj-1) — R (ap;_,)]
Furthermore, for all sufficiently large k
{o%p; 10 Toj_ -t oo “prl}EA('fb Up;_10 Epj_yo hu)
and making use of Theorem 2.1 we obtain
api—1 p,~1
| § DRe@@. 0= X 1Fe(, 0) — Fi(m (), wol| <
*Pj—1 t=pjH 3.7)

K3 [h(apj—) — b (op; )]

i» @; € H, and uk(ri)—>u(r ;), it follows from the hypothesis
on the sequence Fk(x,t) that

Since r

pj—1
Z [F}L (uk (Ti), a«i) — Py (uk (To)a o"i—l)] -
i-=Pj_1 +1
Pj—1 .
- 3 F@ (ti), %) — F (u (vi), #i-1)] as k-—>o00 (3.8)

i:pj_l—H
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On the basis of (3.6), (3.7) and (3.8) we now obtain

%p;—1 *pj—1
I\ DFe@e),) — § DF(u(r),t)Hgﬁn [ (atp;—3) — b (ap;_)] (3.9)
*Pj— *Pj—1

which holds for sufficiently large k, and j = 1, ..., r + 1, Next, let
J be one of the integers 1, ..., n. On the basis of Corollary 2.1 and
of the last of the inequalities in (3.5)

[0 (op;—1) — 2 (o) <O R (5)) = h(@n;_)) <o (h{55) — b (75— 87) < By
and, hence, for sufficiently large k,
fl ik (otp;—-1) — (7 ) | < By
because @ . ¢ H and yya_ ) —>ula = ).
pj~t kPt Pj-s

On the basis of the definition of the unconditional convergence, we
thus obtain the representation

dpj
& DF (uk (v), t) = u (op;) — ik (%p;_,) = (3.10)
dpj_l

=F(u(7p,')v ij"‘*‘)_F(u('tpj)’ij)‘*‘zkj

where || 2p; | < n/r for sufficiently large k.
From the definition of the integral and from Corollary 2.2 we obtain

apj rp]. 'rpj—i-s apj
S DF (u(x), t) = g ..+ lim S...—}-lim -
g 0+ e+ O
op;—1 “pi—1 *p; Tpyte (3.11)

=F(u (TPJ‘)1TP,' +)_‘F(u(rpj)11pj)+zi
where (see (3.5))
2ill <h(ap;) —h(tp;+) + k() —h(ep;—) <
< h(p; +81')"‘h("pj +) + h(cp)) "“h('tpj =)< /r
From (3.10) and (3.11) there results
“p; “p; , |
S DFy(u(z),)— | DF(u(x)1) ”<—;”— (=1, .., n) (3.12)

c‘pj—l %p 1

for large enough k. From (3.9) and (3.12) we obtain

\|°§ DF (u (<), t) — §'DF @@, )| <72+ 6(h(z) — k(@)



50 Ta. Kurtsveil’

Since n is any positive number, it follows that

[ DFy(ui (), )=\ DF(u(),1)  as k—>o0

u(ﬂa)——u(cl)=g DF (u(x),t) for 93€{a, o/, NH  (3.13)

ay

uy (03)—+u(°3), uy (51) — u (3y)

But the function ulo,) and the integral in (3.13), considered as a
function of the independent variable 03, represents a function
continuous from the left and of bounded variation. Hence (3.13) is valid
for o e(ol, 02'>. Therefore, ulr) is a soiucion of equation (3.1),
u(ai) = x(ol), and because the solution x(+ )} is unique, u(r) for
T € <01, o,">.

Since every convergent subsequence of the sequence x(r ) converges
to x(r ), the sequence xk(r) converges to x(r ), and the Lemma 3.1 has
thus been proved.

Passing to the proof of the theorem, we call attention to the follow-
ing result. It follows from Theorem 2.1 and Corollary 2.1, and from the
facts that o, ¢ H and

en (te) — B ()1 S h(t) — R (8)  for 4, L, EH, 1, <!,

that there exists a number o,” > o such that the assertion (c) of
Theorem 3.1 is true on<01, 01'> .

Let o, be the upper boundary of such numbers 02' c<01, 02> , for
which the assertion (¢) is true on<01, 0,” >, and suppose g, < 0,.
If o, € H, we take 02', o5 € H, 02' <o, < oy sufficiently close to o,.

By the established lemma, xk(az')—>x(02'), and since the distance of
the point (x(au), ou) from the complement of the set G is a positive
number, it follows from Theorem 2.1 and Corollary 2.1 that solution
x,(r) (for large enough subscript) can be extended over the interval
<o0,”, o;>with the preservation of the validity of the assertion (c).
If 0,& H, then for every ¢ > 0 and for the point (x(0,), 0,) ¢ G, by
Theorem 3.1, one can find numbers 81, 52 occurring in the definition of
unconditional convergence. Let the numbers o,”, 055< 0., 0,> satisfy the

conditions
T4 0y <3y <o, <95 oy + 8 (02", 05 € 1)

Since x(o, ) —>x(0,”), the solutions x,(r) can be extended over the
interval<o,?, 05>with the preservation of the condition (c) because of
the definition of unconditional convergence: Thus we arrive at a contra-
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diction and the theorem is proved.

The chief difficulty which one meets in trying to apply Theorem 3.1
is connected with the complicated concept of unconditional convergence.
For this reason we give certain criteria which are sufficient to insure
unconditional convergence.

Theorem 3.2. Let hy(t)—>h(t) uniformly on<o, TD>and F(x,t)

F(x,t) uniformly in G. Then i}(z,t)*’*F(z,t} and 61 = GF .

Remark 3.2, Under the conditions of Theorem 3.2, one can make use of
Theorem 3,1 (retaining the assumption that x(t) is a solution of equation
(3.1). Since x,(r)—+x(r) for v € < o,, o, >{1 # and since hy(r)—+h(r)
uniformly, it follows that xk(r)nmbz(r) uniformly. In this case the
requirement that G, G€ H is not necessary.

Proof. Let (xo, to) €Gp and let p be a positive number not greater
than the distance of either one of the points (x/, t_ ) and
(xo + FTxO, t, +) - foq,.to), to) from the complement of G. Let ¢ > 0
be given. We select positive numbers &,, &, such that

3 < Yap

By + R (ty 4+ 8) —h(fy+) 4 h(t) —h(t,—38;) +
Lej' o By + k() — h(t,— &) [k (t; +) — R (t,)] <min (s, Y/, p)

6 = max (s?p] e (8 — R (1), su;: [ Fi(z, t) — F (z, t}))

and let & > 0 be such that
66k + By 4+ h (B4 8)) — h(ty ) + B (te) — h(ty—38;) +
0 (2B By b (80) — b (tg — 80) [ (tg -+) — b (¢ min (e, V) (3.14)
fy— 8 <1 <ty <ta <ty + 8y, ly —zo ]| <3,
According to Theorem 2.1 and Lemma 2.1 the solution x,(r ) of equation
(3.2), 2p(t,) = y, exists on the inberval(tl, t0>, k> K and we have

| 2 (26) — o | <l 2k (21) — 2o l| 4 [| 2k (26) — @k (11) [| << Bg =+ P (L) — B (1) <
<8y 26k + R (t)) — h (t,—¥y)
From this it follows that
” T () + Fr (i (Lo), ty+) — Fy (we (L), £p) — Ty —F (2g, 1o +) + F (g, Ep) || <<
<8+ 26 + h(ty) — h (ty— 8;) + 26, +
+ o @y + 20k + h(tg) — h(t,—3)) [h (2, +) — 2 (1,)]

and the solution x,(r) can be extended over the interval{t,, t,) . We
thus obtain the final estimate:

o (te) — xx (£,) — F (Tor 2o 4 ) + F (20, 1) || <

'< “ Ly (to) — Xy (tl) “ + “ T (to “"") — Tk (to) —F (xo’ to +) + F ($0, to) ” +
F iz (te) — 2k (B +) | <
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P (L) — P (L — 8y) + A (g 4 81) — e (85 +) + 20k +
I F (zn (L), to+) — F (¢ (to)s to) — F (g, 8o +) + F (o, L) || <
< h(te) —h(ty—38) + h(ty+8)—h(t, + )+ 66; +
F 0@y + 28, + A (t) — h(t,—3)) [A (o +) —h(t)] e

The last of these inequalities follows from (3.14). This completes
the proof of Theorem 3.2,

Since the uniform convergence of the functions F}(x,t) to F(x, t) 1is
a requirement in Theorem 3.2, the function F(x,t) will be continuous if
F}(x,t) are continuous functions. This means that Theorem 3.2 is not
applicable for the investigation of the case when in the sequence of
the classical equation there occur terms dj(t) which approximate to the
so-called Dirac function

¢
di (1)>0, 5 dy(t)dz—>0( or 1)wheret<0( or ¢>0)
Y
For this case we establish Theorem 3.3 and some corollaries to it.

Retaining the previous notation, we consider the subset consisting of
points (x,%) ¢ G such that

Theorem 3.3. let
}i’gsup [ (1) — b (1) SR (ts) — R (1) (L <ty b, 1, € H)
Fio(r,t)—F(z,1) ((x,8) € Gy, 1 €H)

Suppose that for an arbitrary point t, ¢ H )for which there exists
an x ¢ E  such that (x, t ) ¢ G,) there exist linear subspaces E(
and E'2) of the space E., and an increasing function ho(t) (g tgD
continuous at the point t.

Let the following conditions be satisfied:

(g) the spaces E(1) ) E(2) are orthogonal; their intersection
contains only the origin, and their algebraic sum is the entire space

E.. (In consequence of this requirement every vector u ¢ E_ can be

expressed in a unique way in the form
( 2
= u(l) + uk2)’ u € E(l), u(ﬁ) € E®

We will write

F(x,t) = FiY) (x5, 6) + FL)(x, 1), x() = (1)) + 2(2) (), eto)

(h) F(z:ty +)— F (x, ) = F (@ + u, tg+) — F (x +u, to) € E®
if (@ 1), (¢ +u,t)€G, u€CE?
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(i) H Fk(2) (x, t2) _ Fk(2) (3’), tl) _— Fk(e) (.’lZ +u, t2) + Fk(2) (x + u, tl) H\<~
< I hy (t2) - ho (ty) |

if (z, b)), (&, 1), (x+u,ty), (x4u,t,)€G, ut E®,

() IF, ) = Fa® (@, 1) [ g (B0) — Bo (1) ]

Under these conditions Fj(x,t) converges unconditionally to F(x,t)
i.e,

Fr(x, ) F (z, t)in G,

Proof. Let (x,, t) ¢ G,, t, & H. On the basis of the hypotheses, and
Theorem 2.1 and Corollary 2 1, one can easily deduce that there exist
numbersS > 0, 8 > 0, K> Osuch that, 1ft -—81< t, < t,
ly - =l ¢ 5, k $ K , one can determine the 1ntegral xk(t) of equation
(3.2) on the mterval(t ty+ 0 2 with x,(¢,) =

Let ¢ > 0 be given. For this ¢ and for the point (x_, t ) we determine
81 > 0, &, > 0, 83 > 0 such that the following inequalities are satisfied:

8,<8,,8,<3,,
o () [k (to431) — ko (f6— 81)+35) + 85 + 2ho (¢ + &;) — 2R, (¢ — &) +
+h(t+¥)—h(to+) + h(tg) —h(te— 81) +- (3.15)
+ o (ko (fo -+ &) — ko (t, — 31)) [R (£ + &) — A (te — 3) + 85) <=

Let.to—-S <t <t0<t2<t0+31, tyy ty € H, and let K > K be

such a large number that
| Fie (2o, ta)—F (@, o) | <U/2 B3 | Fie (o) 1) —F (2o, 1) [| </ 8
R (82) — By (81) < R (ts) —h (&) 485 for & >K
We next prove that the condition (III), which enters into the defini-
tion of unconditional convergence, is satlsfled . The requirement (a) is
satisfied because of the choice of the numbers 51 5, Next, let

lly = =/l < 8,, k> K and suppose that .x,(r) is a soluuon of the equa-
tion (3.12) with7 ¢ < te t, > xplt) = yo

From requirement (j) and Corollary 2.1 it follows that

ty
24D (25) — 2 (1) [} = ll§ DF® (i (), 0| < (3.16)
< ho (53) — Ry (t1) < o (85 + 8) — by (8o — 8y) (L <<ty ts)
Since
I F® (@ () + 00 (2), 1) — Fi® (@ (3) + 2@ (5), ) —

— FP (00 (1) + 2 ® (3), 1) + F @ (1) + 0 (), 89| <
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< (| 2a® (7) — 2D (2 ) | Fxe (8) — P (1) | <
< @ (hg (ty + 8)) — ho (ty — %)) LAy (t5) — hr (20 l
(tgy t5, Ty, t2>)

we have by Corollary 2.1
g ‘
1D 1F® (0 (8) + 02 (3), £) = F4® () (1) + 2 (), 001 || <
’ oo (L Br) — by (o — 1)) (e (12) — By (£1))

Hence
iy
2 (1) — 2 (t)) = | DFP (2 () + 2 (v), 1) =

h

s

={ DR @™ (1) - 5P (1), ) + u (3.17)
t
where

Jzi | <o (ho (8y 4 81) — Ay (Eg—51)) (B (£3) — R (t1) - C3)
Furthermore, ‘it follows from requirements (i) that
[Fx® (@™ (1)) + 22 (3), t5) — Fx® @ (1) + @ (1), 1) —
— Fy (2@ (1) + 2x® (z), tg) + Fi (2D (8) 4 2@ (1), L)< Ro (85) — ko (L)

and by Corollary 2.1

143
|§ DIFD @ (1) + & (2), ) — FI2 @ (8) + 2 (), 1)) |<
" < hy () — ho (ty) < Ro (Eg -+ 8y) — R (tg — 81) (3.18)

It is obvious that
{2

§ DE® (0 (1) + 2 (1), £) = Fu® (@i (1), 1) — Fu (an (), 1)
t
Using (3.17), we obtain
2 ® () — 21 (tr) = Fi® (@ (1), o) — FiP(ma (1), 1) + 26 + we (3.19)
where |wy | < hy (£ + 8;) — Ry (£, — 3;) and
26 (1) — 2 (1) = F® (wg,t5) — F® (To,t1) + sk + 2 -+ wi (3.20)
I8kl << @ (32) R (g +8y) — h{to — 8;) + 3]

Next, we have

F (o) to +) — F (o, to) = F® (2o, to +) — F? (x,, 1,) € E
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| F (o, to +) — F (xo, to) — FQ (%0, to) + F (o, t1) | =
=1F® (2o, to +) — FP (25, te) — Fi (20, 13) + F (20, 11)] <
K| F (2o 85) — F (2, ty+) ” + | F (zo, to) — F (2o, t1) | +
+ [ Fr (x0y ta) —F (20, ta) || + || Fi (2gy 1a) — F (2, 1) <
Lh(ty+3) —h(to+) + h(te) —R(t) + 3 (3.21)

From (3.16), (3.20) and (3.21) we obtain
l 2k (ta) — zi (1) — F (o, to +) + F (0, 25) | <<

< ho (2o —+ 81) — kg (to — ;) + skl -+1] 24 || + |lwk]|+
+ h(to‘|‘31)—h(to+)+h(to)—h(to“—31) +33<3

where the last inequality follows from (3.17), (3.19), (3.20) and (3.15).
This completes the proof of the Theorem 3.3.

Let us now pass to the consideration of more concrete differential
equations. Let

f,-(:cl, ey Zn, b)), 81Xy -, z1) t=1,..., n, 0<<l<<n)

be real continuous functions of their arguments defined for — = < x; < o,
-2 tg£ z,z> 1 and 31'("1' ceey ) =0fori=1, ... 1L (If 1 =0,
then all functions g; reduce to constants).

Let dk(t) (k =3, 4, 5, ...) be continuous functions defined for

- 2z< t< z and satisfying the following conditions
z

[ 1de))dt <€ <0 (3.22)
—z
t
D)= de(®dim0 (or 1),  if 1<0 (or t>0)
—t z
Vi@ ide+ {1di(m) dr>0 for k> o0, 0t <
2 ;

We shall consider the system of differential equations
dx;
Eli = fi (xlr « o0y Ty t) +g1 (x, L) xl) dk (t) (l:‘ 1""1’7; k=3v475) (323)

Let us set
!

Fi(@y, o, an, ) = fi (@, - . ., Zno <) ds
0
B(t)=0 (or 1), if —z2Kt<0 (or 0<t<y)

and let us write the system (3.23) in the equivalent form (3.24)

dx;
2;' = D[Fl (xla s ey xm t) +g1 (x[y .« vy xl) Dk (t)] (l = 1,..., n; k=3,4_ 5‘“_)

Let us consider the "limiting" system

dz;

= =DIFi(2y, ..., 20, 1)+ gi (31, - . ., 1) B (1)) (=1,..,n (3.25)
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Suppose that the solution of the system (3.25) is uniquely determined
by the initial conditions. This is equivalent to assuring that the solu-
tion of the system

dz;
W = fi(Zy .y Tny 1) (i=1,...n) (3.25%)
has the same property.
Let (@), (D) (=1<T<H)

sup | z; (v) | < M, (r€{—1, + 1)

be the solution of the system (3.25). From the remark 0.1 and from (2.2*)
is follows that (x,(¢), . x.(t)) is a solution of the system (3.25*)
on the interval < - I, O>and <'10 1D separately and that

limay (1) =2;(0) G =1,..,D
t~ 0+
ilimaii(t) = 2;(0) + gi (2, (0), ..., 2, (0)) (i=l41,...,m
-0
We define the function g;(x, ..., z;) in the following way:

i@y .., m)=0 (i=1,...10

gﬁ"(-”?n--wxl):gi(xn---,.’IJI), if |zl <My (G=1,...,10)
g @y . xm)=gi(Yu .- W), if lmax | 2] > M,
=li...s
x.
yi:Ml'E{iJ’TE‘l (G=1,...Li=Il+1,..,n)
i=1.., 1

Obviously, |g;(x,, ..., )| < M,. Let us consider the systems

‘ffﬁ =D [Fi(2;, ..., Tn, t) + 571 (x4, « « -y 21) Dy (2)] (3.26)
'(‘id?l =D [F'l (xli <oy Tn,y t) + gi (xlv “eny xl)B(t)] (327)

Since the systems (3.26) and (3.27) coincide on the set
|z; | < M, ((=1,...00 —o<g <o, ..., —ox,<o; —28<3)

with the systems (3.24) and (3.25), respectively, it follows that x(r)
is a solution of the equation (3.27). The set G is defined by the
following inequalities
|z | <M, 2] <2
where M; > M, + (M, (see (3.22)). Obviously, C > 1. Let N
M,=max fi{xy, ..., an, t) for (Zp - Tn t) €G

i=1,..., n
and let us set

¢
h(t) = Vr(Mut + CM,D (), (1) = Va (Mt +M: | 1dy (z)] dv)

-z
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Since it is true that if a function is continuous on a compact set it
is also uniformly continuous on that set, it follows that there exists a
function wlp), continuous on 0K 7 < 7, with @(0) = 0 (5 is the dia-
meter of the setG) such that

DT ey A E N t))ﬁ]llz <m([2 (;i-—xi)g]lh)

im]l im]

L~ ~ ', S~ i
1D @G =g (@2 <o([D@E—=p) ]
ful LRSS
Let us write the equations (3.26) and (3.27) in the vector form:
d d
S =DFy (=, 1), & =DF (z,1) (3.28)

It can be verified that F(x,t) ¢ F(G, w, k), Fi(x,t) ¢ F(G, o, hy)
and that the set G, (see the definition of G'2 before Theorem 3.3)
contains all the points,

(%3, « -+, Tn, 0), where'z;| <M, G=1,...-1)

Let us prove that the conditions of Theorem (3.3) are satisfied.
Obviously, the set H contains all the points t, 0 < t £ z,
lim suphy (22) — hx () <R () — k() (<t t1, 2 € H)
k- o
and Fp(x,t)=>F(x,t) where t ¢ H because of our assumptions about the
sequence dj(t).

Let E(1) be the space of the points (xl, «eer, 213 0, ...,) and E(2)
be the space of points (0, ..., 0; Xlpgr vees x,), and let us set
h, = 24/mlt).

That the conditions (g) to (j) of the theorem are satisfied is
obvious. The requirement (j) is fulfilled because the terms that contain
the functions § vanish. Hence, Fj(x,t)z2F(x,t) in the region G,.

Let y;, be a sequence of points in E, such that y,=—>z(- 1) as k.
According to Theorem 3.1, there exist solutions xp (r } of the equation
(3.28), x, - 1) = y, on the interval {~ 1, + 1) for all k sufficiently
large, and x,(r)—>x(r) for 0 < |r| < 1.

Since it is true that forn > 0
By (t) — by (L) — h (t5) — R (L) as k- oo

uniformly if t,, t, € <r;, 1>, or if ty, ty € <- 1, - n), it follows
that xk(r)"'*xj(r) uniformly as k= if 0 < ¢ < |7| < 1.

Making use of the inequalities (3.16) we now obtain the result that
x£1) (r)=>x(1) () uniformly on the entire interval {- 1, + 1), This
means that the first coordinates xj;(r) of the functions x3(r) tend
uniformly to the corresponding coordinates of the function x(r) on the
interval <—- 1, + l>. Taking into consideration the fact that
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]xki(r)l < My for k large enough, we conclude that the system of
functions (xk (r), ..., xkn(r)) is a solution of the equations (3.24)
and (3.23). Thus the solution of the system (3.23) converges to the

solution of the system (3.25), t # 0, and the first functions converge
uniformly.

We call attention to the fact that all our considerations are applic-
able also to the sequence of equations of the form

48y . .
= flay oo, a8 )+ g (o, a2, ..., x5 1) d (1) (3.29)
xe E (if s = 0, we take g = const), for the substitutions
dx de
=z, =g, 2l1=xs

will transform the equation (3.29) into the system (3.23). This means
that the solutions x(t), and their derivatives up to the order s - 1
will converge uniformly. In regard to the derivative of order s it can
be said that this function will converge for t # 0 to a function which
can be discontinuous. (If s = 0, then the solutions x,(t) converge only
for t # 0.) It should be noted that x in equation (3.29) can be
considered as an element in E .

4. Uniqueness of solutions
We stipulate that
op)=coq for >0, ¢>0,
Theorem 4.1. Let F(x,t) ¢ F(G, o, h), (x,, t,) ¢ Gp. Then, for any

given interval <t_, t  + 0>, 0 > 0 there exists at most one solution

x(t) of the equation p
T =DF(z,1), z(l) =1 (4.1)

Remark 4.1. The uniqueness is not always preserved for the solutions
x(t) defined on the interval(tO -0o , t0>, x(to) = x (o > 0) if such
solutions exist. This follows from the example given in Remark 2.2,

The Theorem 4.1 is a direct consequence of the following proposition.
Let two solutions x(r ), y(r) of equation (4.1) be given for ¢ < t;
t, + 0 >. Then the following inequality is valid
[z () —y ()<l (te) — 5 (o)l L 4 e (h(to +) — A )] X
% exp e (h(2) — h {1y )} (4.2)
In order to prove this inequality (4.2) we first establish two lemmas.

Lemma %.1. Let the function U(r, t) take on values j in some space En,
and let the finction V(r, t) take on values in E,, and let the integrals
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\ DU (x, 1), Szl)V(«:, 1)

exist. Suppose that
V)<V (ns) for t<T Vi, ) 2V (r, %) fort><
and suppose there exists a function 8(r) > 0 (r, < r < r,) such that

U (x, ) = U ()< Vi )=V )|, if [t—=<B(r), n<r <,
Then

Ty Ty
1§ pU =, ] < DV, 1)

The proof of Lemma 4.1 can be carried out without difficulty on the
basis of an equivalent concept of the integral as given in reference (n,

Section 1, 1.2.
Lemma 4.2.

T2

{ @) <

T

1
E1

[REHL (1) == RE+1(x,)] (k=0)

We assume, as always, that h(¢) is an increasing function continuous

from left and that y T
@ dn() = DRE@ B (D)

(See [ 1], remark 1. 1. 2; the integral on the right side exists by
Theorem 1.1, where F(x,t) = xh(t), ulr) = RR (- ).

Lerma 4.2 follows from the fact that for every ¢ > 0 the function

. jr i (3) ek (x)

is an upper function for hR(r OR(t).
We shall now prove the inequality (4.2). Since =x(r) and y(r) are
functions of bounded variation, |x(r) ~ y(r) < K, 7 € <t , t, + 0 >.

(bviously,
Z(ty) —y(ta) =2 (o) + F(x (L), to+)— F (T (Lo}, to) — y (te)—

2

= F(yto) to )+ F(y (), o)+ lim { DIF@(), 1) — F(y(3), 0] (43)

ot ¢

Iz (to) -+ F (@ (L), Lo +) — F(x(te)s to) — y (to) — F (y (o)) to4) +

+F(y (L) )| <l (te) —y (to) {1 +c(h(ts +) — k(L) =u
Since {x(r) | < K

HE @ (), ) = F (y (=), )] — [F (2 (z), 5) — F (y (3), DI <K | R (t) — A ()]
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Lemma 4.1 yields

I lim SzD[F(z(T), t)—F ]n K (h(ts) — R (t, +))

Ty toe T,

and from (4.3) we obtain the inequality
| (%) — y (w) | S u + cK (h(xy) — h(t, +))
. Let us assume that the following inequality already holds for some
integer s.
120 =y AI<u[1+ e (@ —h(tgb) +. . 4 LEE_tloth ]
+ K leth() _:; (ko +)¥° (4.4)

From this it follows that
F (@ (x), ) = F (y (x), 0] — [F (2 (x), ) — F (y (v), D)) | <
et +et@—hu+)+ m+{C‘h“’(j_"§t;,+”}s*l+
T UL EIICES)) ]}:h(t) R ()|
and by Lemmas 4.1 and 4.2 we have

T2

lim { DIF @), )—Fy e, )<

T G T,

T2

< lim | Dfen[t te(h@—r(t+) + ... + COOZALINT 4

Tty 7 (s—!

ek {c(h(T) —Sf!l(to +) ] (h(t) —h(ty+))=
- s R 2) — 841
=n[c (h(sg)— bty 4)) 4 . .. Lo S!h(to+»} ] L glhe zs +h1<)tl,,4.))}

From (4.3) it now follows that the inequality (4.4) is valid for
s + 1. Since it holds for s = 1, it is valid for all integers n. Taking
the limit, we obtain (4.2),

We call attention to the fact, that one can prove in an analogous way
that the successive approximations of Picard will converge under our
assumptions.
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