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The following generalized differential equation is considered: 

dz 
5 = DF (5, t) (0.1) 

This equation can be reduced to the ordinary equation dx/dt=f(x,t), 

if the partial derivative aF / at = f(x. t) is continuous. The 

existence of a solution of the equation (0.1) will be established and 

it will be shown that the solution is a continuous function of the 
parameter if the function F(z,t) is continuous in x and of bounded 

variation in t when x is fixed. 

In particular, it is found that the solution of the equation 
dx/dt = f(x, t) + d(t) is near to some (completely determined) dis- 
continuous function, if f(x. t) is continuous, and the functipn d(t) 

is near the Dirac function, i.e. 
OD 

d 0) > 0, d(t)=0 for Itj>8>0, 
5 

d(t) dt = 1 

--0D 

We recall certain definitions and results given in an earlier 
paper [l 1 which will be used in the sequel 

Let 6(r) be a positive function defined for 7.4 r < r l . Let the 

real-valued function LI (7, t) be defined for r,,< I \< 7 l , r - 6(r) 

( t< r + 6(r). The real function M (r), r.< r <r* is called an 
upper function for the function II if there exists a positive function 
6’(r)< 6(r), 7. < r 4 r* such that 

for 
(7 - To) (M (T.) - fif (To)) > (T - To) (U (70, 4 - u (To, To)) 

A function a(r) will be called a lower function for U if the 

function -m(f) is an upper function for the function -II. For an 
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38 la. Kurtsvcit’ 

arbitrary upper function M(7) for U, and for an arbitrary lower 

function r(t) for U it is always true that 

M(7’)--M(r,)~;,((7’)--(~,) 

This inequality justifies the following definitions. 

(0.3) 

If O(r , t) is such that there exists for it an upper function MC7 1 
and a lower function ~(7 1, and if 

MN (M (7.) - 44 (7, )) = sup, (m (r’ ) - m (7, f f (0.41 

where M(r) is the set of all upper, and a(f) the set of all lower 

functions for li. then u is said to be integrable (according to 

Perrone in the generalized sense), and the number I = infd MT*) - 

M(r.)f is called the generalized integral (according to Perrone) of 

DU with the limits of integration from 7. to 7 *: 
i* 

I = ’ DU (T, t) 
I (0.5) 

5. 

For the P-integral thus defined, certain basic theorems C8n be 

proved, for example, 

if 7.4 a& 7* and if the integrals appearing on the right-hand side 

or the integral on the left-hand side of the equation 8re defined. 

If U(r , t) = f(7 ) t, then the integral (0.5) exists only when 

7. 

s 
f (r) f+r 

t. 

exists in the sense of Perrone. and in this case the two integrals 

8re equal. 

If the function Uf7, t) = (U,(7, t), . . . , U,(r , t)) takes on velues 

in 8 Euclidean space En, then [i(r , t) is said to be integrable if eaok 

of the functions 111 (r , t). . . . , U,(r , t) is integrable. In this case 

j*DU (7, t) = ( j*D& (7, t), . . . , i*D& (7, t) 

T* 5. 79 
) 

We next give the definition of the generalized difrerential equa- 

tion (0.1). Let G be 8n open subset of the Euclidean space E,_, and 

let the function F(x, t) be defined for (x, t) 6 G, x = (x1. . . . . x,), 
8nd take on values in the Euclidesn space En. Let the function ~(71 

be defined in fl f 7 < r2, take on values in En, and let (%(7),71~ G 

for r iI7 272’ 
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The function x(r) is said to be a solution of the generalized 
differential equation (0.1) ff 

Remrk 0.f. The given definition of a generalized differential 
equation is a particular case of the definition introduced in an 
earlier article [ 1 1, where it was assumed that the function F was 

defined on some subset of the space E,f and depended on the vari- 
ables %, r, t. 

It is proved that all solutions of the generalized equation (0.1) 
are also solutions of the classical equation 

dx I dt = f (x, t) WV 

if the derivative aF(x, t)/a t = f(x, t) is continuous: and, conversely, 
every solution of (0.8) is also a solution of (0.1). 

The existence of the integral (0.5) is proved below; the existence 
theorem of a solution for equation (0.1) is proved 
proof is similar to the proof of the corresponding 
Carathkodory’s conditions. 

The continous dependence of the solution on the 
sidered in Section 3. In Section 4, the uniqueness 
under the assumption that o(q) =C rl (c > 0). 

1. Existence of the integral (0.5) 

We introduce the following notation: 

in Section 2. The 
theorem under 

parameter is con- 
theorem is proved 

h,(t), h,(t) are functions, defined for t t<TI, T,>, non-decreasing 
and continuous from the left. 
o(q) is a function defined for O,< q 6 qot q. > 0, continuous, increasing, 
o(7)) 3 627) (c > 01, 0 (0) = 0. 
G is an open subset of the n-dimensional Euclidem space E,(T,, T2), 

(T2 > T,), F = F(G, o, $1 is the class of functions F(n,t) satisfying 
the following conditions: the function F(x,t) is defined for (x,t) t C 
and takes on values in E,: 

if @I, b)r (~1, hh @zdd (~a, Q e G 11~ - 5% II< rlo 
u(r 1 is a fuuction defined for r E(U , a,), (a, > ulI, u(r 1 t E , 
(u~~)~r) 6 G,/(uk,I - u(f2)I\ 4 jh,tr,f - h,b2)f, for fl,r2 tG,, a,). 

N(q) is the set of all points t c (T,,T,), for which 
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either w ($(t+) - h,(t)) 2 7, 

Or h2(t+) - h,(t) > qo, 

where 7 is an arbitrary positive number and 

$tt+) = lim h,(r) as 7 +t, r > t. 

(The cardinal number of the set N(v) is obviously finite). 

A(II, rI, r2, h,) is the set whose elements are finite sequences of 

numbers 

if the following conditions are fulfilled: 

(1) o1 = clo < (X1 < . . . < a3 = u*; 

(2) clo 5 r l$.U1 5 ‘2 I_ .a. 4 rs < 01,; 

(3) if t c N(n) f7 -: (7 o2 i, then there exists an index j 

that t = T and 7j < ~1.; i:’ the case that t = o,cN(v ), it is only 

such 

required t A at t = ~j f’ or the appropriate j; 

(4) if ‘j T N(q), then 

h,(“j) - h,(aj_,) < 70 t O (hZ(@j) - h;tcrj_, 1) < 7 t 

if ‘j 6 N (q), then 

hz (aj) - hz(Tj+)<riot o(hz(crj)--hz(TJ +))iT (for =j < 02) 

kx (Tj) - ha (aj-1) < ~09 w (hz Pj) - hz (aj-1)) < ri 

‘lhe sequence A will be called a subdivision of the interval < u1 ,u2 7. 

For the formulation of the theorem on the existence of the integral 

we need the following lemma. 

Lemma 1.1. The set A(?, aI, u2, h2 J is non-empty. 

For the proof of this lemna we select for every TC < aI, u2, > a 

positive_nnmber S(r 1 satisfying the following conditions: 

if r?N(n 1, then 

8 CT) < ylo, w (hz (3 - h, (~1) < 3, w (h, CT) - h, G’) < 3) 

TkN(ri), 
if Ron, then 

6 CT) < 50, w (h, C:‘) - hz CT +)) < 9, w (AZ (T) - I/, (Z’)) < 7, 

where ; = C (T) = min (02, T + b(y)\, :’ = c’ (T) = max (aI. ‘: - 2 (7)) 

Ckviously, the interval (<‘,(j d oes not contain a point of N(n) if 

rZN(qj, and the intersection of the interval cc’,<) with the set N(r] i 

contains only the point r if rrN(7 1. 

By decreasing S(T ), one can establish that the above assertion is 
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true also for the closed interval < i’(r ), CO ) >; 

Let the intervals< [‘(r,), [(r,) >, . . . . < 4”(rS), [(rs) > cover the 
interval < al, u2, ., r I < r 2 < . . . < r *, and suppose that the interval 

< fJl’ u2 > is no longer covered if one of the intervals < <‘(I .).r(r .) 
is omitted. This property implies that [‘(r j) < L’(rj+l , 

Z(rj+i), 5oj_i) < 5'(rj+i)' 

1 C(rj5 < ' 

> 

From these inequalities it follows that there exist numbers c$,,..,c~ 
such that the subdivision I 01~~ r 1, . . . , r s, ~1s) satisfies all of our 
requirements. In particular, if t t < ol, o2 > fl N(q), then there 
exists au index j such that t = r jt for t c < 5’(r), C(r) > only if 
t = r. Greater details of these considerations are given in reference 
[ 1 I ,d 1, in the proof of Lema 1.1. 

Theorem 1.1. The integral 

qm (U(T), t) (1.1) 
0, 

exists if 
IQ, ~1, ~1, . . . , G a,) C -4 (rl, 01, 02, h2), then 

~~{°F(n (7)9 t, -i Rjll<l; V/n Ihl i32) + h2 t"2) -b toI) - h2 ("dl 

a1 j-l 

where Rj = F (U (~j), kj) - F (U (Tj), +I), if Tj $ N (q) or Tj = QZ 

Rj = F (U (Tj +), aj) - F (U (Tj +), 51 +) + F (U (Tj)l Tj +) - 

- F (U (Tj), aj-i), if TjeN(y), Tj<Qz 

Core 1 Zarye!. 1. 

1s DF (u (4, Q I/ d I h, (4 - h, (33) I for o3, o4 6 /ol, us) 

Proof: L.eT Ilk , t ) b e an arbitrary component of the vector function 
F(u(r ),t>, and let q > 0. If rot < ol, o2 >ro,fN(q) let us set 

M (% 9 = u (%I q + ri (hi (7) + h, (T)) 

m (539 -9 = u (TOI T) - rl (h, (9 + h, (9) 
TC/Ti, Ta> 

If rot < ul, a2 >n i%j), let 

M (70, 9 = u (To, 7) + q (h, (T) + h, (T)) 
A! (5, 7) = u (7.0, To +> + u (To +, q - u (To +, 

for %J < 7 < 01 

m (70, 7) = u (To, 4 - q (h, (7) + hz (T)) 

mbo, ~)=u(Tp %4-)+u(~o+, T)-U(To+, 

for GJ < 7 < 02 
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We define the function Mfr 1, for P t < ul, a2>, the following way: 

M (UJ = 0 

A.2 (T) = *i[M (Tj, Crj) - M (Tj, Ctj-l)] + M (Ti, 7) - M (Ti,. CC{..__I) 

i-1 
if aim1 < T < Cci 

We prove that M(r 1 is an upper function for U(r , t). The inequality 

(T--- %) IM (4 - .u (%o)l > (z - 4 IIJ (% 3 - lJ (.% %fl 

is obviously satisfied if roe < ol, u2 > n N(q 1, To 4 r 4 u2 and 

if r is near enough to TV. 

Let r, r. f < a$_,, 
f 1 >. We obtain 

~l,i> if ri?ZV(q). If rif N(v), let r, zc~ <aiwl, 

Here we have used the following inequalities 

‘Ihe case that remains to be considered is when r i cN(q ), r. , rc < 
i, a;,>. In this case we obtain in a manner analogous to the one used 

above 

Here we have used the inequalities 

j u (qJ, T) - u (%n %) - U(~i+,~)-~~(7i+,~~)I\< 

\<I\ F (u (‘to), 9 - F (u (4 70) -F(u(~i +), 4 -I- F(u@i +)t ~o),~~< 
< 0 (11 U (to) - U (q +) 11) ) IQ(T) - hj (70) 1 <a (f%(Q)--hz tTi +)) I h~(s)--hl(zO) I< 

-<71lhr (9 - h,hJl 

thus we have proved that for every r. E < ul, u2 > there is satisfied 

the inequality (0.2) if only r t < ul, u2 > is sufficiently near to rc. 

‘Ihis means that Mfr 1 is an upper function for U(r , t 1. In an analogous 

manner we can construct a lower function n(t). From the inequality 
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M (4 -M (4 - (n (4 - m (31)) -s 27l (h, (3) -1 h, (4 -A (4 - h, (4) 

it follows that the integral (0.5) exists, for the functions M(r ) and 
m(r ) can be constructed for an arbitrary positive 7 (and for the 
corresponding subdivision). Hence, the integral (1.1) exists. Further- 
more, in consequence of the inequality 

M (3‘J -M (as) > i’ DU (T f) >, m (4 - m ($3) 
0s 

and from the representation of the functions M(r ) and m(r ) it follows 
that 

1 i D~J CT:, t) - $ Pj j < ri (h (34) + h (4 - h, Cd - h, (4) 
0, j-1 

where Pi is the appropriate component of the vector Ri. ‘Ihis yields the 
inequality of ?heorem 1.1. 

2. Existence theorem for the solution of equation (0.1) 

Let Fh, t) be a given function of the class F(G,o,h,). We denote by 
G the subset of the set G which consists of those points (x,t) for 
with (n+F(x,t+)- f F(x, t), t 1 c G . obviously, if for a fixed 
t, h,(t +) = h,(t) and (n,t) c G, then (n,t) c CF. It is easily 
verified that GF is an open set. 

Theorem 2.1. Let (Xc, t, 1 c G and let us select a number { > 0 which 
has the following properties: if to 4 t, + [ and 11 x - [no + F(x,, t,+k 
F(n,,t,+)l~~ < $(t) - h, (to+ 1, then (z, t J E G . Under these conditions 
there exists a function x(r ), defined for to 4 r < t, + 6 which is of 
bounded variation, is continuous from the left, and satisfies the 
equation 

dx 
d7 
- = DF(z,t) (24 

with the initial condition x( t, ) = x0. 

Remark 2.1. In consequence of (1.1) we find that every solution u(r) 

of equation (2.1) which is of bounded variation and continuous from the 
left satisfies the inequality 

II lJ (TZ) - u (71) II <lb (72) -h(Q) I (2.2) 

for arbitrary r 1, r2 from the interval on which u(r) is defined. In the 

article [ 1 1, Section 1. there is given another equivalent definition 
of the integral (0.5) by means of partial sums and a certain limiting 

process. From that definition it is easily deduced that the ineqllality 

(2.2) is valid for any function u(r) which is a solution of equation 

(2.1), without the assumption that the function u(r) be of bounded 
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variation and continuous from the left. This can be established on the 

basis of the fact that an inequality analogous to (2.2) can in this case 

be established for any one of the partial sums which enter into the 

earlier definition of the integral (0.5). 

Remark 2.2. Any solution x@) which is defined on some interval with 

to as its left endpoint, can be extended for increasing I (just as in 

the classical case) as long as the point (x@ ),r f lies in the set GF 

But the solutions cannot always be extended for decreasing r. Let us con- 

sider the most simple case, Suppose x c El and F(x, t) = x for tgY 0; 

F(x, t) = 0 for t > 0. Xn terms of the concepts we have introduced, the 

following theorem is true: if T t < ro < r l , and the integral (0.5) exists 

for the interval < r l . T * >. then the integral (0.5) exists for the 

interval < f l , r. > and if the lim iJ(ro,ri as t--+rO + exists, then 

71 -. 

lim 
s 

DU (7, t) = 
7,-r 70 + s 

DU (7, t) + 1 I;m+U (TV, t) - 1J (q, q) (2.2*) 
- 0 

7. 5* 

(see [ 1 ) , theorems 1.3.3 and 1.3.6). In consequence of this it follows 

that lim x(r ) = 0 as r-+ 0 +, where x(t) is an arbitrary solution defined 

in some neighborhood of the number t = 0. For the given example, the 

solution x1& ), defined by the equation x1 CT ) = 1 for r > 0, cannot be 

extended to r < 0. 

Proof. We define a sequence of functions xi(r): 

2i (T:) = 50 for t, - E/i<7.<& 

2i (Ti) = 20 + ” DF (Zi (T - E / i), t) s for t,<~l<t,+E 
1. 

Making use of Theorem 1.1 and Corollary 1.1 one can verify that the 

functions Xifr 1 are uniquely defined for to - t/i 4 7 4 t, + 5 for all 

integers i > i,, and that 

j\Zi(~~)-Zi(~1)II< 1 hl(52)- h,(r,)l fO1 Tl,Tg 6 :/to- E/i, to + Ei 

si(tg i-f = 50 + F(JG, to +)--.F(G, tu) (i > iO) (2.3) 

In consequence of the inequality (2.31, one can select from the 

sequence xi(r) a subsequence which converges uniformly in the interval 

< to, t, + 5 >. We, therefore, 

r t < t,, t, + t>, i-b . 
suppose that ni(t ) +X(Z ) uniformly for 

Cbviously, 11 x2 (r 2) - x(rl) 114 jht(r2) - h,(rl)\ and xi(r - e/i/i,* 
x(r) (but not ~ifo~ly), 
left. 

for the function hl(r 1 is continuous from the 

Let us evaluate the integral (1.11, where t < a1 < a2 < tl + 7. 

Let 77 be any positive number less than qo. Let us take a fixed sub- 
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division { a,, r 1, aI, . . . , r s, as) E A$, ol, a*, h, 1. 

E3y Theorem 1.1, the integral (1.1) differs from the partial sum 

2 [F (z (T~)T aj) - F (x Crj)9 Orj-I)1 + 
i 

~j CA’(q), or i = s 

+ c V’(z (y +), q+d - J’(z (:j 51, Y + ) + (2.4) 

+ F (X (TZ~), ~j +) - F (5 (rj), aj-d)l 
by a term whose norm is not greater than fi, where K is independent of 

IEt US Set T'j,i = 'j if 7j 7 N(q), or j = S, I'j,i = I f t/i if 
j < s and ZjfN(,,). Let gi(t) = hi(t,) if t, < t 4 t, + t i, and let J 
gi(t) = h,(t - C//i) for t, + c/i < t, + [. 

?~US la, ~'1 i r ~11, 2'2 i r .,., r 
sufficiently la& i, 

's i, asI c A(qt 01' ~2' $1 for 
and, hence by ‘Iheokem 1.1, the integral 

can be expressed as the partial sum 

z[F (2i (~j - t/i), aj) - F(G (cj - E/i), q-d + 
3 

~~ CN (q), or i = s 

+I:[F(zi(sj+),aj+,)-F((si(y+),7j+)+ 

(25) 

7j CN (T), i 2 s 
+ F (a (pi), pi 3-j - F (z (T)j, aj-Jl 

to within an error whose norm is not greater than I@, where K 1s 
independent of i and 7 for sufficiently large i. Since “i(’ )-+x(r ), 

i +n(r ) and F(x, t) c F, it follows that the sum (2.4) and 
?I’;; (’ ) . are arbitrarily close to each other for i sufficiently large. 
Therefore, 

i’ DF (xi (T -- i/i), t) + y DF (X(T), t) for i-b 00 

0, QL 

and n(r ) is a solution of the equation (2.1). This completes the proof 
of the theorem. 

3. The continuous dependence of the solution on the para- 
meter 

(‘Ihe basic result is Theorem 3.1. The later theorems are obtained as 
special cases of it. ) 
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Let Ffx, t) be a function of class F(G, w, h) and Fkfx, t) be a 
function of class FG, o, hkl, where k = 3, 4, 5, . . . . h(t) and hk(tf 
are increasing functions in t c (0, T>, fG C En<O,T>). Furthemtore, 
h(t) and hk( t 1 are continuous from the left. Let H be the set of points 
of discontinuities of the function h( t 1, G, be some open subset of GF 
which contains all points (x, t> E G for which t 6 H. 

We shall say that the sequence Fkfr,tf converges ~~onditionally to 
the function Ffx, t) in C, , and write F(n, t) + F(r, t 1, if the following 
properties are exhibited 

!I) ,‘iz SUP (hk (&I - hk (tl)) < 12 (tz) - h (tr) for t,, t, 6 H; * 1, < t, 

(11) Fk (G t) -+ F (x3 t) for k--t 00 (5, t) 6 G,, t 6 H 

(III) if (x0, t,) 6 G,, 
numbers 6,, 

t, g H, then for every c > 0 there exist 
S, having the following properties: for arbitrary numbers 

kt 2 
t 6 H, t, - a,< tl < t, < t2 < t, + 6,, there exists a K > 0 such 

(a) if j\y - XJ < S, and k > K th en there exists a function xk(r 1, 
defined in tr 4 7 4 t?, which is a solution of the equation 

dx 
- = DF, (2, t), d-i xk (h) = y 

(b) every function xk(7 1 satisfying (a), satisfies also the 
inequality iIzck(t2) - z,(t,> - F(xo, t, +> +F(n,, t,) It < c, and there 
exists a positive number cl, independent of the solution q(r 1, of the 
subscript k, and of the point y, such that the distance of an arbitrary 
point (x,(7 ),r ) (t, 4 f \( t2, 
is greater than p. 

k > K) from the boundary of the set G, 

Theorem 3.1. i.et Fk(%,t)dF(x,t) in G,, let x(t) a solution of the 
equation 

dz 
- = DF@, t) 
dr (3.1) 

be uniquely defined in the interval<al, o2 > by its initial condition, 

*I’ U2 f H, (X(7 >,7 ) t G, for 7 C < 01, o2 >. lJ?t yk E En, yk-kX(ol 1. 

Then: 

(c> for all large enough k there exists a solution Xk(7) of the 
equation 

2 = DI;k (2, t) (34 

defined for r E < ol, u2 >, zk(ol) = yk, and the distance of an arbitrary 
point (%k(f),7 1 from the boundary of the set.Gi is greater than some 
positive number p; 

Cd) if xk(7 ) is a sequence of functions satisfying condition (c), 
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Remark: We shall say that the solution x(r) is uniquely defined by 

its initial condition if each solution U(I) of the equation (3.1) 

defined in some interval <crl, a*’ > C < ul, o2 >. u(u,) = ~(a,), 
coincides with X(T) on < ul, u2* >. 

First we prove the following leavna. 

Lemma 3.1. If the condition (c) of lheorem 3.1 is satisfied on some 

interval<ul, a*'> C <ul, u2>, u2 ’ E H, then the condition (d) is also 
satisfied on the same interval<ul, u2’>. 

Proof: Let the sequence xk(r ) satisfy condition (c> of Theorem 3.1 
on the interval<ul, o2 ‘>. lhen there exists a subsequence uk(r ) which 

converges for each r r<ul, u2’> n H. (Ihis follows from the fact that 
the functions uk(r 1 satisfy the inequality l(q(X2) - q(X,) 11 < ]hk(X,) 

- qx,)l I A,, A, r<y q’h in consequence of 2.1). Suppose 

U(T) =,'i; Q(T), 'i6<%, %'> r-l H 

Then we have 

II u (U - u Pd II < I 11 (U - h (h,) ;> A,, A, c (31, 33’) 0 N (3.3) 

Let us extend the definition of the function u(r) in such a manner 
that the function tlfr ) be defined and continuous from the left in the 
interval<ul, a2 ‘>. 'Ihen (3.3) will be valid for A,, A, r<ul, u2'>. 
Let a3 be an arbitrary number in the interval<ul, u2>, u3 > ul, a36 H 
Our inmediate aim is to prove that 

for h-da0 (3.4) 
0% 01 

Snppose 3 > 0. Let 7, < P2... < ?, be points of the set(ul, us> n 
N(q). In consequence of our hypothesis it follows that (u(rj ), 7.1 6 
For the numbers E = q/i and the points (u(P. ), P' ) we select nu&ers 

Gi. 

Slj > 0, 82j > 0 such that the condition ( i II), on the ~conditional 
convergence, be satisfied, let Sj ba such a positive number that 

}L(Yj) - h(Yj - Sj) + 12 i^;j + ;j)--h (yj +)<y / r 

(3.5) 
aj< $i* iil(lZ~j)- h (Tj - aj))< &Jj 

In a manner similar to the one used in Lavaa 1.1 we prove that there 
exists a subdivision ( ao, r 

%’ **a, TS’ 
satisfies the. foilowing conditions: 

a,1 t A(?, or, u2 h) which 

(e) letr 
Pl 

<.,.<Ipr be numbers such that rjc<ul, u,>nA$). 



48 la. Kurtsveil’ 

Ihen rpl = ?I, rp2 = i2, . . . . rp, = fr, and hence 

~Pj - 2j < api- < Tpi < apj < %j + bi 

(f) if rjlN(n), then rj~ H; 

(g) uj t H, j = 0, 1, es., S. 

(For the construction of the subdivision we start with a system of 

intervals J defined in the following way: the interval<c’ (7 1, ((7 )> is 

It is easily seen that the intervals of the system J cover the 

interval<ul, u2 ‘> and SC on). 

Obviously, 1 c1 
Pi-1 

, 7 
Pi-1 

+ 1, . ..) c1 
pj 

- 11 

c A(?, a a 
Pj-1’ Pj-l’ 

h), where j = 1, . . , , r + 1, ~1 
PO 

= a,, , a 
b-+1 

= asI 

and from Theorem 2.1 it follows that, 

apj-l 
Pi-l 

# 1 DF(~(T), t) - 2 [F(u(G), ai) - F (U(%)r ai-l)lj/d 

apj-_1 
i=pj_l+l 

(3.6) 
< 2r, [h (Q--~) - 11 (apj_Jl 

Furthermore, for all sufficiently large k 

b%_p 'tPj_ I+19 * ‘. 7 apj-d 6 A (‘i, ~~~~~~ ap+, hk) 

and making use of Theorem 2.1 we obtain 

apj-l Pj-’ 

II s 
DF/c (Q (T), t) - 2 [Fk (uk (‘b), ai) - Fk (Q (‘h), Q-l)] iI< 

aPj_1 
i=Pj++l 

< 3v1 [h (apj--l) - h (apj_r)l 
(3.7) 

SilKX 7 i, “i 6 H, and Uk(ri) mu, it follows from the hypothesis 

on the sequence Fk(x, t ) that 
Pi-1 

2 [Fh: (uk (pi), Xi) -~- I”k (~1; (r,), ai-dl - 

i-=Pj_11-1 

Pj-1 

3 2 [F (U (Ti), Xi) -p (U (Ti), Ori-I)1 
as k-+oc (3.8) 

i;-TJj_l+-1 
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& the basis of (3.6), (3.7) and (3.8) we now obtain 
ap j-l 

I/ 1 

a'pj-1 

DFk (ZJk (T)~ t) - 1 DF(u(s), t) I/< 67 [h (apj--l)-h (ap+)] (3.9) 

+1 aPj_l 

which holds for sufficiently large k, and j = 1, , , . , r + 1. Next, let 

j be one of the integers 1, . . . , n. On the basis of Corollary 2.1 and 
of the last of the inequalities in (3.5) 

11 U (apj4) - u (7~ j) II Go (h (T~j) - I2 Capj-l)) < w (h <l;j) - h i;j - 8,)) < h 

and, hence, for sufficiently large k, 

11 Uk (apj--l) - u lTPj) 11 <h 

because CXP ,_1 
I 

c H and uk(ap. 1 
I- ) d”(olp’ )* J-1 

On the basis of the definition of the unconditional convergence, we 
thus obtain the representation 

=Pj 

s 
DF(Uk(T),t)=Uk(apj) - Uk (aPj_l) = 

k 
+j-I 

= F (U(7pj), 7pj +)-F(~(~p~),‘Cp~)+~kj 

(3.10) 

where 11 zkj 11 < v/r for sufficiently large k. 

From the definition of the integral and from Corollary 2.2 we obtain 

=Pj =cpj 7pj + E 

s 
DF (u (T), t) = 

s 
. . . 

QPj-1 “p j-1 

+,‘iz \ . . .+.‘:‘. =7 . . . = 

7Pj Tpi+F (3.11) 

= F (u (+t ‘cpj +)--F(u(rpj),rpj) +q 

where (see (3.5)) 

IIsjIl \<h(apj)-h(~.pj+)+ht~pj)--h(apj--l)< 

<h(~pj+%)--(rpj+)+ h(2pj)-h(~pj--6j)<ri/’ 

From (3.10) and (3.11) there results 

I[[’ DFk(Uk($,t)- ai’ DF(U($t)11<-f: (i = I, . . . . n) (3.12) 

=pj-1 LxP j-1 

for large enough k. From (3.9) and (3.12) we obtain 

\i”j DFk (“k (‘c), t) - j*DJ’ (U (‘F), t) 11 <q [2 + 6 (h (+s2’) - h (al))] 
0% 01 
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Since n is any positive number, it follows that 

fDFk (Uk (T), t) -+i'DF (U (T), t) as k -+ OQ 

4, (1, 

U(%) -21 (or) = ~DF(u(:). t) for a3 6 /a,,$‘] n H (3.13) 

01 

llh. (a3) -+ u (03), Uk (4 -+ u (4 

But the function u(o?) and the integral in (3.131, considered as a 

function of the independent variable u3, represents a function 

continuous from the left and of bounded variation. Hence (3.13) is valid 

for u7 6<u1, u2’>. Therefore, u(r ) is a solution of equation (3.11, 

~(a,) = x(ol ), and because the solution X(T i is unique, U(T ) for 

r r<ol’ o*‘>. 

Since every convergent subsequence of the sequence xk(r ) converges 

to x(r 1, the sequence xk(r 1 converges to x(r ), and the Lennna 3.1 has 

thus been proved. 

Passing to the proof of the theorem, we call attention to the follow- 

ing result. It follows from Theorem 2.1 and Corollary 2.1, and from the 

facts that u, E H and 

[hti (tz> - hk (~JI < h(ts) - h (tr) for t,, ta 6 H, tr < tz 

that there exists a number ul’ 5 u such 

Theorem 3.1 is true on<uI, ul'>. 

Let uu be the upper boundary of such 

which the assertion (cl is true on&, , 

that the assertion (c) of 

numbers a*' c<ui, u2>, for 

O2 ’ >,. and suppose u4 < u2. 

If u4 c H, we take u2', ug 6 H, u2' <-a4 < u5 sufficiently close to u4. 

By the established lemna, x~(u~')+x(u~'), and since the distance of 

the point (n(o,), u,,) from the complement of the set C is a positive 

number, it follows from Theorem 2.1 and Corollary 2.1 that solution 

nk(r ) (for large enough subscript 1 can be extended over the interval 

<o/9 u,>with the preservation of the validity of the assertion (cl. 

If a,? H, then for every E > 0 and for the point (x(u4), uU) c G,, by 

Theorem 3.1, one can find numbers a,, 6, occurring in the definition of 
unconditional convergence. Let the numbers u2’, u5c< ul, u2> satisfy the 

conditions 

Since x(u2’) +~(a~‘), th e 

interval<u2', 

solutions X~(T ) can be extended over the 

uFj>with the preservation of the condition (c) because of 

the definition of unconditional convergence: Thus we arrive at a contra- 
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diction and the theorem is proved, 

The chief difficulty which one meets in trying to apply meorem 3.1 
is comected with the complicated concept of unconditional convergence. 
For this reason we give certain criteria which are sufficient to insure 
unconditional convergence. 

Theorem 3.2, jet, hk(t) -&h( t) uniformly on(C), T)and F(x, t) 
Fix, t) uniformly in G. Then Fh(x, t)+F(r, c) and C1 = Gf , 

Renark 3.2. Under the conditions of Theorem 3.2, one can make use of 
Theorem 3.1 (retaining the assumption that x(t) is a solution of equation 
(3.1). Since ~~(t)-+x(t) for r c < or, o2 >n Hand since hk&)-+h(r) 

uniformly, it follows that xk(r )4rfr ) uniformly, In this ease the 
requirement that ol* Gz C H is not necessary. 

Proof. Let ho, C,) CGF and let p be a positive number not greater 
than the distance of either one of the points (xo, to) and 
(Xc f I%,, to+)- F(r,, to), to) from the complement of G. Let 6 > 0 
be given. We select positive numbers S,, 8, such that 

61 c l/z P 

601, + 6, + h (4, + 8,) - h (lo +) + h (4J - h ($0 - 6,) -I- 

+ w (2&+ 6, + h (to) - h @, - U) [h (&, +) - h (&,)I< min (eI 1/S p) (3.14) 

4) - 6, < t, i t, < t2 < 6) + h* I!Y -%if<h 

According to Theorem 2.1 and Lemna 2.1 the sofutiunxk(r 1 of equation 
(3.21, X&J = yt exists on the interval<tI, to>, k > K and we have 

II Q (to) - zo II < II Xk PI) - xo Ii+ 11 Q (4,) - z/c @I) Ii< 6, + hk (to) - hk (Q < 
< h. + 26, -t- h (to) - Jz (t, - 6,) 

From this it follows that 

fl Sk (4J + Fk (Sk P*L to t-1 -PI, bk (Q, 4)) - zo -P (20, t, +) -f- F (zo, to) \l < 
< 8, + 3’1, + h ($,) - h (to - 8,) + 20k + 

+ 0 (6, -k zfik + h (to> - h (t, - 6,)) [h (t, f) - h (t,)] 

and the solution zckfr 1 can be extended over the interval(tc, tz) . We 
thus obtain the final estimate: 
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< hk (4-J) - hk (t, - 61) + hk (to + 6,) - h/i (t, +) + 2% + 
+ it F kk (to), to +) -F (xk (t,), t,) - F (x0, t, +) + F(z,, t,,) I/ < 

< h (h) - h (to - 6,) + h (to + 6,) - h (4, + ) + 6% + 
+ CJ (6, + 2Ok + h (4,) - h (t, - 81)) [h (t, +) - h (t,)] < E 

The last of these inequalities follows from (3.14). ‘Ihis completes 

the proof of Theorem 3.2. 

Since the uniform convergence of the functions Fk(x, t) to F(x, t) is 

a requirement in Theorem 3.2, the function F(x,t) will be continuous if 

F,(x, t) are continuous functions. lhis means that Theorem 3.2 is not 

applicable for the investigation of the case when in the sequence of 

the classical equation there occur terms dk(t) which approximate to the 

so-called Dirac function 

dk (t) > 0, i dh(s)dT--+O( or l)wheret<O( or t>o) 
-1 

For this case we establish ‘Iheorem 3.3 and some corollaries to it. 

Retaining the previous notation, we consider the subset consisting of 

points (x, t) E G such that 

(y, t) ‘ZG, if /I~----jj/h((t +)-h(t) 

Theorem 3.3. Let 

lim sup [hk ( tz) - hk (t,)l G h (t2) - h (tl) 
k+co 

(tl< t27 4, t2 6 H) 

Fk (r, t) -> F (x, t) ((5 t) 6 & t 6 fo 

Suppose that for an arbitrary point t, Z H )for which there e;iyts 

an x t En such that (n, to) 6 G2) there exist linear subspaces E ’ 
and E(‘) of the space En, and an increasing function h,(t) (0 < t 4 7’) 
continuous at the point to. 

Lt the following conditions be satisfied: 

(g) the spaces E(l) , E(‘) are orthogonal; their intersection 

contains only the origin, and their algebraic sum is the entire space 

En. (In consequence of this requirement every vector u c E, can be 

expressed in a unique way in the form 

u = Ji) + u@), n(l) 6 EC’), J2) 6 E(2) 

We will write 

Fk(x,t) = Fil) (x,t) + FhZ)(z,t), n(r) = n(l)(r) + ni2)(r), etc) 

(h) F(z,t,+)--((r,t,)~F(z+u,t,+)-F(~+rL, to)@‘) 
if (Z, t), (a + .!A, t) 6 G, U C- EC2’ 
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(j) jl F?(“r, b) - PI? (2, t,) I/ < 1 h, (t2) - h, (tl) I 

Under these conditions Fh(x,t) converges unconditionally to F(x,t) 
i.e. 

Proof. Let (x0, tJ E G2, t, T H. On the basis of the hypotheses, and 
Theorem 2.1 and $orollary 2.1, one can easily deduce that there exist 
numbers 8, > 0, 6, > 0, K” > 0 such that, if to - sI< tl < t,, 

lb - XJ < $2, k > i? , one can determine the integral x,( t ) of equation 
(3.2) on the interval(tI, to + sI> with x,(t,) = y_ 

Let 6 > 0 be given. For this E and for the point (xo, t,) we determine 
6, > 0, 6, > 0, 8, > 0 such that the following inequalities are satisfied: 
6, < 8,, 6, < XT*? 

w @I?) [h (&-t%) - 12 (k- wi-831 i- 43 + aI (t + %I - 24 (t - %I + 
+ h @, + 4) - h (4 +) + h (4)) - h (43 .- 61) -I- (3.15) 

+ w (h, (4l+ 6,) - ho (to - 6,)) [h (&I + 4) - h (4l - 61) + %I < s 

Let to - 
such a 

6,< tl< t,< tg< t,+S1, tl, t2c H, andletK>gbe 
large number that 

/j Fk (% 4&--~ (%ol tz) I[ <r/z 6,~ 1’ Fk (% t,)--F (% TV) ii < “/a 83 

hk (&) - k (tr) < h (tz) -h (4) -i- % for k > K 

We next prove that the condition (III), which enters into the defini- 
tion of unconditional convergence, is satisfied. ‘Ihe_ requirement (a) is 
satisfied because of the choice of the numbers gI, 6,. Next, let 

IIY - n,ll < a,, k > K and suppose that .Xk(f ) is a solution of the equa- 
tion (3.12) with r c < tl, t2 > Xkft,) = y.. 

From requirement (j) and Corollary 2.1 it follows that 

11 xk(l) (b) - zk(l) (tl) Ij = /If DFk(‘) (xk ($ f, 11 < 
2% (3.16) 
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we have by Corollary 2.1 

11 

II! ’ D [ Fk(‘) (Q.(I) (T) + Eli@) (T), t j - ph.(‘)) (J$‘) ( tl) + zk’) (T), t)] i[ < 

1, 

Hence 

< Q (/I, (t,+ 6,) - h, (61 - 31)) (hk (b) - hk (h)) 

(3.17) 

where 
jjzk /I < 0 (ho (to + h) - h, (&I - ‘;I)) (I2 (h) - h @I) +- %) 

Furthermore, *it follows from requirements (i) that 

11 Fk(‘) @kc’) (tl) +- 2,$*) (T), t5j - I;k(*) (xk (‘) (tl) f zk(“) (tl), t5j - 

- F!i (xk(‘) (h) + xkc2) (T), b) + Fk (d’) (&) t zk@) (TV), b) jl < / h, (ha) - h, (h) ! 

and by Corollary 2.1 

fz 

iis 
D [F’;’ (xk”) (tl) + xkc2) (T), t) --@’ (d’) (tl) + d*) (tl), t)] I< 

t, 
< h, (t2) .- hl (h) < ho (to -t El) - h, (4l - 61) 

(3.18) 

It is obvious that 

Using (3. l?‘), we obtain 

%&‘) (tz) - J;kC2) (tl) = FkC2) (5k (tl), tz) - Fk(2)(%k (tl), tl) + zk + wk (3.19) 

where 11 wk ti < ho (to + 61) - h, (to - 61) and 

5kt2) (tz) - xkc2) (tl) = pea) (&~,t,) - Fc2) (“&) + Sk + zk + Wk (3.20) 

11 Sk iI< 63 (62) [h (t, -+--~I) - &o - 51) + %I 

Next, we have 

F (%v to +> - F (z,,, t,) = F(“) (z,,, t, +-) - Fc2) (z,,, to) 6 E(‘; 
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II F (~0, to -i-j - F (~0, to) - F(k2) (x0:0, tz) + F(k2) ($0, h) II= 
= 0 Fc2) (x0, to +) - Fc2) (x0, to) -F!?(~o, t2) + F?‘(zo, Q/l\< 

< IIF (~0, t2 > - FNov to+) 11 + I! F Po:o, to) -F Nocg, b> II + 

+ IIFk (20, h ) --F boo, b) 11 + It Fk (20, h> - F (20, hII< 
< h (to + 4) - h (to +) + h (to) - h VJ + 8, (3.21) 

From (3.16), (3.20) and (3.21) we obtain 

11 Xk (tz) - xk (TV) - F (Xo, to t) + F (5, to) iI < 

< ho (to + 4) - ho (to -h) + ilskll +I\ Zk 11 + liwk\l+ 

+ h (to + 4) - h (to +) + h (to) - 12 (to - 8,) +h <I 

where the last inequality follows from (3.17), (3.19), (3.20) and (3.15). 

'Ihis completes the proof of the Iheorem 3.3. 

Let us now pass to the consideration of more concrete differential 

equations. let 

fi(Xi, -. ., Glr t), &(X1, * * .7 21) (i = 1, . . .) n; OGl<n) 

be real continuous functions of their arguments defined for - m < xi < 00, 

-z,< td z,z > 1 and g;(x,, . ..) xl) = 0 for i = 1, . . . 1. (If 2 = 0, 

then all functions gi reduce to constants). 

Let c$(t) (k = 3, 4, 5, . ..I be continuous functions defined for 

-z,<t\<z and satisfying the following conditions 

j Idk(t)Idt<C<oo (3.22) 
-2 

Dir(t) = i &(T)dr-+ 0 ( or 1), if t<O ( or t>O) 

-t 

Iji:(T)id-+ iId,( d-c+0 for fk+m, o<t,<Z 
--z t 

We shall consider the system of differential equations 
dxf 
- = fi (51, m e -9 X,, t) +gi (X, . . e, Xl) dk (t) 
dt 

(i= l,...,n; k=3,4,5) ,(3.23) 

Let us set 

J'i (21, . . . . x,,, t) = 1 fi (XI, . . ., 5,. 7) d7 

R(t)=0 C or I), if ‘-z,<t,<O (or o<tGzz) 

and let us write the system (3.23) in the equivalent form (3.24) 
dxi 
a~-= D[Fi(z,, ***, Xn, t)+gi(rr,. . .v xL)Dh.(t)] (i= I,..., n; k=3,4.5,...) 

Let us consider the nlimitingn system 

dxt 
- = D [J'i (21, * * *, Xn, t) + gi (X1, * . *, Xi) B (t)] dT (i = 1 9 ‘, n) (3.23) 
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Suppose that the solution of the system (3.25) is uniquely determined 
by the initial ‘conditions. ‘Ihis is equivalent to assuring that the solu- 
tion of the system 

dx. 
-g- = fi(cqr f * *I %, q (i = 1, . . ., n) (3.25*) 

has the same property. 

Let (x1(9, * * .7 &l(4) (-l<T<++) 
SnPIsj(‘E)I<J4 (7 6 <--- 1, + 1)) 

be the solution of the system (3.25). From the remark 0.1 and from (2.2*) 
is follows that (n,(t), . . . . x (t)) 
on the interval < - 

is a solution of the system (3.25*) 
1, O>and?O, l> separately and that 

lim q (t) = Zi (0) (i = 1, . . . , 1) 
t- o+ 

f\moT PI = xi (0) + gi (zl Co), . . . , 22 (0)) (i =1+ 1, . . . , m) 

We define the function g”i(xl . . . . z,) in the following way: 

& (zr, . . . ) 21) E 0 (i = 1,. . .( 1) 

&(% * * 0, XL) = gi (21, * . ~3 XI), if ]X~/<<M, (i = 1, . . ., 1) 

i&,, . * *, a) = gi(yl* * . -9 Yl), if . my I4>& 
pl..... 

14jcMl 
zj 

max r)zjI 
(i=l,..., 1; i=l+l,..., n) 

j-l,..., 

Obviously, ( gi (Z,, . ..) x,)( < M2, Let us consider the systems 

(3.26) 

dx. 
_A = D [Fi(z,, . . ., x,,, t)+ &+ . . ., a) B(t)1 
dr 

(3.27) 

Since the systems (3.26) and (3.27) coincide on the set 

I xi I < MI (j=i ),.., >1; --co<Xl<a3 ,..., --m<x*<~;--z(~<4 

with the systems (3.24) and (3.25)) respectively, it follows that ~(7 ) 
is a solution of the equation (3.27). ‘Ihe set G is defined by the 
following inequalities 

lxjjl<M3, Ill<2 

where M3 > M, + GV, (see (3.22)). Cbviously, C 2 1. Let 

M 4 = max fi (zq, . . ., zn, i) for (XI, . . ., Gt;n, t> 6 G 
i=l..... n 

and let us set 

h (t> = ~+fd $ CM,D Cl>), hk((t) = Jh+&t + M, 1 I C&(T)) do) 
--z 
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Since it is true that if a function is continuous on a compact set it 

is also uniformly continuous on that set, it follows that there exists a 

function o(q ), continuous on O,< q < qo, with o(O) = 0 (p. is the dia- 

meter of the setC) such that 

Let us write the equations (3.26) and (3.27) in the vector form: 

g = DF* (x, t>, g = DF (x, t) (3.28) 

It can be verified that Ffr, t) t F(G, o, k), Fk (x, t ) E F(C, o, hk) 
and that the set G, (see the definition of G2 before Theorem 3.3) 

contains all the points, 

(x1, * * -, xn, O), where I CT+ j < M, (i = 1, . . _,- n) 

Let us prove that the conditions of Theorem (3.3) are satisfied. 

Obviously, the set H contains all the points t, 0 < t 2 z, 

~~~p.~~~ (tz) -i&k &) < Bt (t2) - h @I) (fl< h, h, tz 6 J-8 
-t 

and Fkfx* t )+F(n, t > where t c H because of our assumptions about the 

sequence dk ( t ). 

Let ld I) be the space of the points (x,, . . . , x1; 0, . . . , 1 and E(2) 

be the space of points (0, . . . . 0; .r~+~, . . . . nn), and let us set 

h, = 2A/a!)&tL 

That the conditions (g) to (j) of the theorem are satisfied is 

obvious. The requirement (j) is fulfilled because the terms that contain 

the functions g vanish. Hence, Fk(x, t )aFfr, t ) in the region G2. 

Let yk be a sequence of points in En, such that yk*x(- 1) as k+-, 

According to Theorem 3.1, there exist solutions Q(T ) of the equation 

(3.28), x& 1) = yb on the interval <- 1, + l> for all k sufficiently 

large, ana xk(r >+i(f ) for 0 < If 1 ,< 1. 

Since it is true that for 9 > 0 

hk (tz) - hk (h) + h tt2) - h (h) as 

uniformly if t , t2 e (q, l>, or if ti, tg c <- 
that nk(r )-;CX r ) uniformly as k+- if 0 < c < Ir t 

. 1, -I>, it follows 

[ < 1. 

Making use of the inequalities (3.16) we now obtain the result that 
x A” (7 )+(f)(r) uniformly on the entire interval <- 1, + l>, This 

means that the first coordinates zki (r ) of the functions qfs ) tend 

uniformly to the corresponding coordinates of the function x(r ) on the 
interval<- 1, + 1). Tak‘ zng into consideration the fact that 
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1 “k,(T 11 < M3 for k 1 arge enough, we conclude that the system of 

functions (XL, (7 ), . . . , xbn(r )) is a solution of the equations (3.24) 

and (3.23). ?&us the solurion of the system (3.23) converges to the 

solution of the system (3.25), t f 0, And the 

uniformly. 
first functions converge 

We call attention to the fact that all our considerations are applic- 

able also to the sequence of equations of the form 

$gy=i(x,i,..., P, 1) + g (a, :r:, 
n E E, (if s = 0, we take g = const), for the 

. . ., 39-l) dk (t) 

substitutions 

(3.29) 

x = Xl., 
hl dxs-l 
Ji--=3+,..., 7=x” 

will transform the equation (3.29) into the system (3.23). This means 

that the solutions n,(t), and their derivatives up to the order s - 1 

will converge uniformly. In regard to the derivative of order s it can 

be said that this function will converge for t f 0 to a function which 

can be discontinuous. (If s = 0, then th e solutions n,( t ) converge only 

for t f 0.) It should be noted that x in equation (3.29) can be 

considered as an element in E,,. 

4. Chiqueness of solutions 

We stipulate that 

a(,) = 9 for 77 > 0, c > 0. 

Theorem 4.1. Let F(x, t) 6 F(G, a, h), (x,, t,) c Gp Then, for any 

given interval (to, t, + 0> , u > 0 there exists at most one solution 

n(t) of the equation 

$-= DF (5, t), x (t,,) = x0 (4.1) 

Remark 4.1. The uniqueness is not always preserved for the sOlUtiOnS 

x(t) defined on the interval< to - u , to>, x(t,) = x0 (a > 0) if such 

solutions exist. This follows from the example given in Remark 2.2. 

‘Ihe Theorem 4.1 is a direct consequence of the following proposition. 

for t < t, L.et two solutions X(T ), y(r ) of equation (4.1) be given 

i, + (T >. ‘l%en the following inequality is valid 

I/ 5 (T) - Y (7) Ii < I/ 5 (IO) - !/ (t&L 1 + c (h (LO -!-) - 11 (to) 

x esp {c (A (7) - h (t” -fi))} 

)I x 
(4.2) 

ish two lemas. In order to prove this inequality (4.2) we first establ 

Lemma 4.1. Let the function U(T , t ) take on values j in 
and let the fdnction V(T , t) take on values in E, , and let 

some space En, 
the integrals 
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exist. Suppose that 

V (z, q Q V (% T) for t < 2, V (2, t) r, I( (‘r, T) for t > “; 

and suppose there exists a function Sk ) > 0 (T I 4 7 4 r2 I such that 

i u (T, t) - u (7, 4 II\< ! If (5 t) - If 67 4 1, if [~t--i<8(~), 2r\<r<Tz 

Then 

/ii IX7 (5, t) // < T” D’c7[% tB 

The proof of Lenma 4.; can be carrCd out without difficulty on the 
basis of an equivalent concept of the integral as given in reference t 11, 
Section 1, 1.2. 

Lemma 4.2. 
Q 

5 h” (7) dh (T) < & [h”+’ (Ta) - h”+r (%,)I (k >, 0) 
$1 

We assume, as always, that h(t) is an increasing function continuous 

from left and that 78 

1 he b) dh (?) = f phk @j h (t) 
71 71 

(se [ 1 ] , remark 1. 1. 2; the integral on the right side exists by 
lheorem 1.1, where F(x,t) = rh(t), u(r) = hk(r )I. 

Leama 4.2 follows from the fact that for every E > 0 the function 

& I&k+1 (T) + eh (2) 

is an upper function for hkG k(t), 

We shall now prove the inequality (4.2). Since nfr ) and y(r ) are 
functions of bounded variation, \/~k > - yk ) 11~ K, r c < to, to + o >. 

Obviously, 

5 (%) -Y (%) = z (GJ + F (5 (GJ, t* -I-> - F (z (&I), t,) - y (t,)- 

-F (Y (to), t0 I-) 3 F (Y (to), t,)+ *!Jy+ p D [F (5 (T), t) - P (y (T), t)] (4.3) 

112 (to) + F (5 (to), to +) - F (5 (to), rij;l- y (&I) - F (y (to), t, +) + 

-!- F (Y (to)* to) II < 112 (IO) -Y (4Jl11 + c (h (to +> - h (to))] = u 
Since ((A7 ) ‘I\ < K 

11 fP @ (-;h t> - F (9 (% 91 - IF (z (T), T) - F (y (T), T)l/j <CR j h (t) - h (2) j 
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hxna 4.1 yields 

and from (4.3) we obtain the inequality 

\I5 (~2) - Y (4 II < u + CK (h (4 - h (t, +).) 

Let US assww that the following inequality already holds for some 
integer s. 

i/x+> -Y(T)//<+ _t c(~(~) -h(t,+)) + . . .+ ~‘(~(~)~~~~~~))~‘-’ ] + 

+ K Ic (h @I - h (to +w 
S! (4.4) 

From this it follows that 

II IF ix WY 0 - F (Y (‘CL L)l - [F (z ($7 7) - F (y (4, 41II< 

<c(u[I+c(h(r)-h(t,+))+ ...~{c(h(d~~~~~,+))}‘-l+ 

+ &- cc fh (‘I- ’ tto -f-)))’ 
S! 

1 h (1) _ h @) 1 

and by beamas 4.1 and 4.2 we have 

GTfJy+$+ -kc(h(+--h(t,+))+.. . + ic (h (7) - h Go -i-))~““l 
t (s - i)! 1 

+ 

+c~~c(h(T)-h(t~+)~~’ 
S! I (h(c)_h(t +),= 0 

e ?z c (h (CJ - h (to +)) + _ . . +{c (h (7217 PO +w 

I 

From (4.3) it now follows that the inequality (4.4) is valid for 

s + 1. Since it holds for s = 1, it is valid for all integers n. Taking 

the limit, we obtain (4.2). 

We call attention to the fact, that one can prove in an analogous way 

that the successive approximations of Picard will converge under our 

assumptions. 
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